Invertebrate Neuroscience

, Volume 7, Issue 2, pp 87–98 | Cite as

Eleven new putative aminergic G-protein coupled receptors from Amphioxus (Branchiostoma floridae): identification, sequence analysis and phylogenetic relationship

  • Chloe Burman
  • Braudel Maqueira
  • John Coadwell
  • Peter D. EvansEmail author
Original Paper


We have identified eleven novel aminergic-like G-protein coupled receptor (GPCRs) sequences (named AmphiAmR1-11) by searching the genomic trace sequence database for the amphioxus species, Branchiostoma floridae. They share many of the structural motifs that have been used to characterize vertebrate and invertebrate aminergic GPCRs. A preliminary classification of these receptors has been carried out using both BLAST and Hidden Markov Model analyses. The amphioxus genome appears to express a number of D1-like dopamine receptor sequences, including one related to insect dopamine receptors. It also expresses a number of receptors that resemble invertebrate octopamine/tyramine receptors and others that resemble vertebrate α-adrenergic receptors. Amphioxus also expresses receptors that resemble vertebrate histamine receptors. Several of the novel receptor sequences have been identified in amphioxus cDNA libraries from a number of tissues.


Amphioxus Branchistoma floridae G-protein coupled receptor Monoamines Dopamine Octopamine Histamine 



This work was supported by the BBSRC through the Babraham Institute. We thank Dr. Mikhail Matz, Whitney Laboratory, University of Florida, St Augustine, USA for kindly supplying us with the amphioxus cDNA libraries used in this study.

Supplementary material


  1. Airriess CN, Rudling JE, Midgley JM, Evans PD (1997) Selective inhibition of adenylyl cyclase by octopamine via a human cloned α2A-adrenoceptor. Brit J Pharmacol 122:191–198CrossRefGoogle Scholar
  2. Balfanz S, Strünker T, Frings S, Baumann A (2005) A family of octapamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 93:440–451PubMedCrossRefGoogle Scholar
  3. Ballesteros JA, Weinstein WH (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci 25:366–428CrossRefGoogle Scholar
  4. Bargmann CI (1998) The neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033PubMedCrossRefGoogle Scholar
  5. Beggs KT, Hamilton IS, Kurshan PT, Mustard JA, Mercer AR (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honeybee. Apis mellifera. Insect Biochem Mol Biol 35:873–882PubMedCrossRefGoogle Scholar
  6. Blenau W, Balfanz S, Baumann A (2000) Am tyr1. Characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J Neurochem 74:900–908PubMedCrossRefGoogle Scholar
  7. Bockaert J, Pin JP (1999) Molecular tinkering of G-protein coupled receptors: an evolutionary success. EMBO J 18:1723–1729PubMedCrossRefGoogle Scholar
  8. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G-protein coupled receptors. Proc Natl Acad Sci USA 98:8966–8971PubMedCrossRefGoogle Scholar
  9. Brody T, Cravchik A (2000) Drosophila melanogaster G-protein coupled receptors. J Cell Biol 150:F83–F88PubMedCrossRefGoogle Scholar
  10. Callier S, Snapyan M, Le Crom S, Prou D, Vincent J-D, Vernier P (2003) Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell 95:489–502PubMedCrossRefGoogle Scholar
  11. Candiani S, Augello A, Oliveri D, Passalacqua M, Pennati R, De Bernardi F, Pestarino M (2001) Immunocytochemical localization of serotonin in embryos, larvae and adults of the lancelet, Branchiostoma florida. Histochem J 33:413–420PubMedCrossRefGoogle Scholar
  12. Candiani S, Oliveri D, Parodi M, Castagnola P, Pestarino M (2005) AmphiD1/β, a dopamine D1/β-adrenergic receptor from the amphioxus Branchiostoma floridae: evolutionary aspects of the catecholaminergic system during development. Dev Genes Evol 215:631–638PubMedCrossRefGoogle Scholar
  13. Cardinaud B, Gibert J-M, Liu F, Sugamori KS, Vincent J-D, Niznik HB, Vernier P (1998) Evolution and origin of the diversity of dopamine receptors in vertebrates. Adv Pharmacol 42:936–940PubMedGoogle Scholar
  14. Dehal P et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefGoogle Scholar
  15. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968PubMedCrossRefGoogle Scholar
  16. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763PubMedCrossRefGoogle Scholar
  17. Evans PD, Siegler MVS (1982) Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle. J Physiol (Lond) 324:93–112Google Scholar
  18. Evans PD, Maqueira B (2005) Insect octopamine receptors; a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5:111–118PubMedCrossRefGoogle Scholar
  19. Evans PD, O’Shea M (1977) An octopaminergic neuron modulates neuromuscular transmission in the locust. Nature 270:257-259PubMedCrossRefGoogle Scholar
  20. Felsenstein J (1993) 3.6 edn. Department of Genetics, University of Washington, WashingtonGoogle Scholar
  21. Flower DR (1999) Modelling G-protein coupled receptors for drug design. Biochim Biophys Acta 1422:207–234PubMedGoogle Scholar
  22. Fredricksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups and fingerprints. Mol Pharmacol 63:1256–1272CrossRefGoogle Scholar
  23. Garcia-Fernàndez J (2006) Amphioxus: a peaceful anchovy fillet to illuminate chordate evolution (1). Int J Biol Sci 2:30–31PubMedGoogle Scholar
  24. Gebhardt S, Homberg U (2004) Immunocytochemistry of histamine in the brain of the locust Schistocerca gregaria. Cell Tissue Res 317:195–205PubMedCrossRefGoogle Scholar
  25. Gee H (2006) Careful with that amphioxus. Nature 439:923–924PubMedCrossRefGoogle Scholar
  26. Gloriam DEI, Schiöth HB, Fredricksson R (2005) Nine new human Rhodopsin family G-protein coupled receptors: identification, sequence characterization and evolutionary relationship. Biochim Biophys Acta 17722:235–246Google Scholar
  27. Graham A (2000) The evolution of the vertebrates—genes and development. Curr Opin Genet Dev 10:624–628PubMedCrossRefGoogle Scholar
  28. Han KA, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18:3650–3658PubMedGoogle Scholar
  29. Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ (2006) A review of neurohormone GPCRs present in the fruitfly, Drosophila melanogaster, and the honeybee, Apis mellifera. Prog Neurobiol 80:1–19PubMedCrossRefGoogle Scholar
  30. Hearn MG, Ren Y, McBride EW, Reveillaud I, Beinborn M, Kopin AS (2002) A Drosophila dopamine 2-like receptor: molecular characterization and identification of multiple alternatively spliced variants. Proc Natl Acad Sci USA 99:14544–14559CrossRefGoogle Scholar
  31. Holland PW (1999) Gene duplication: past, present and future. Semin Cell Dev Biol 10:541–547PubMedCrossRefGoogle Scholar
  32. Holland LZ, Holland ND (1999) Chordate origins of the vertebrate central nervous system. Curr Opin Neurobiol 9:596–602PubMedCrossRefGoogle Scholar
  33. Holland ND, Holland LZ (1993) Serotonin-containing cells in the nervous system and other tissues during ontogeny of a lancelet. Branchiostoma floridae. Acta Zool (Stockh) 74:195–204CrossRefGoogle Scholar
  34. Horn F, Weare J, Beukers MW, Hörsch S, Bairoch A, Che W, Edvardsen Ø, Campagne F, Vriend G (1998) GPCRDB information system for G-protein coupled receptors. Nucleic Acids Res 31:294–297CrossRefGoogle Scholar
  35. Humphries MA, Mustard JA, Hunter SJ, Mercer A, Ward V, Ebert PR (2003) Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom body of the honeybee brain. J Neurobiol 55:315–330PubMedCrossRefGoogle Scholar
  36. Kapsimali M, Vidal B, Gonzalez A, Dufour S, Vernier P (2000) Distribution of the mRNA encoding the four dopamine D(1) receptor subtypes in the brain of the european eel (Anguilla anguilla): comparative approach to the function of D(1) receptors in vertebrates. J Comp Neurol 419:320–343PubMedCrossRefGoogle Scholar
  37. Kimura Y, Yoshida M, Morisawa M (2003) Interaction between noradrenaline or adrenaline and the β1-adrenergic receptor in the nervous system triggers early metamorphosis of larvae in the ascidian. Ciona savignyi. Dev Biol 258:129–140CrossRefGoogle Scholar
  38. Koyanagi M, Terakita A, Kubokawa K,.Shichida Y (2002) Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans- retinals as their chromophores. FEBS Lett 531:525–528PubMedCrossRefGoogle Scholar
  39. Krogh A, Larsson B, von Heijne G., Sonnhammer EL (2001) Predicting transmembrane protein topology with a Hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  40. Le Crom S, Sugamori KS, Sidhu A, Niznik HB, Vernier P (2004) Delineation of the conserved functional properties of D1A, D1B and D1C dopamine receptor subtypes in vertebrates. Biol Cell 96:383–394PubMedCrossRefGoogle Scholar
  41. Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560PubMedCrossRefGoogle Scholar
  42. Moret F, Christiaen L, Deyts C, Blin M, Joly J-S, Vernier P (2005) The dopamine-synthesizing cells in the swimming larva of the tunicate Ciona intestinalis are located only in the hypothalamus-related domain of the sensory vesicle. Eur J Neurosci 21:3043–3055PubMedCrossRefGoogle Scholar
  43. Moret F, Guilland J-C, Coudouel S, Rochette L, Vernier P (2004) Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates. J Comp Neurol 468:135–150PubMedCrossRefGoogle Scholar
  44. Mustard JA, Beggs KT, Mercer AR (2005) Molecular biology of the invertebrate dopamine receptors. Arch Insect Biochem Physiol 59:103–117PubMedCrossRefGoogle Scholar
  45. Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertbrates using an Amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066PubMedCrossRefGoogle Scholar
  46. Perez DM (2003) The evolutionary triumphant G-protein coupled receptor. Mol Pharmacol 63:1202–1205PubMedCrossRefGoogle Scholar
  47. Schubert M, Escriva H, Xavier-Neto J, Laudet V (2006) Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol 21:269–277PubMedCrossRefGoogle Scholar
  48. Shi L, Javitch JA (2002) The binding site of aminergic G-protein coupled receptors: the transmembrane segments and second extracellular loop. Ann Rev Pharmacol Toxicol 42:437–467CrossRefGoogle Scholar
  49. Srivastava DP, Reale V, Burman C, Chatwin H, Evans PD (2005a) Biogenic amines and steroids activate a β-adrenergic-like Amphioxus G-protein coupled receptor (GPCR). Soc Neurosci Abstr 31:34.18Google Scholar
  50. Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M., Smith T, Evans PD (2005b) Rapid, non-genomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein coupled receptor. J Neurosci 25:6145–6155CrossRefGoogle Scholar
  51. Staden R, Beal KF, Bonfield JK (2000) The Staden package, 1998. Meth Mol Biol 132: 115–130Google Scholar
  52. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JGR, Korf I, Lapp H, Lehvaslaiho H, Matsalla C, Mungall CJ, Osbourns BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E (2002) The Bioperl toolkit: perl modules for the life sciences. Genome Res 12: 1611–1618PubMedCrossRefGoogle Scholar
  53. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  54. Vanden Broeck J, Vulsteke V, Huybrechts R, DeLoof A (1995) Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells. J Neurochem 64:2387–2395PubMedCrossRefGoogle Scholar
  55. Vernier P, Cardinaud B, Valdenaire O, Philippe H, Vincent J-D (1995) An evolutionary view of drug-receptor interaction: the bioamine receptor family. Trends Pharmacol Sci 16:375–381PubMedCrossRefGoogle Scholar
  56. Vincent JD, Cardinaud B, Vernier P (1998) L’évolution des récepteurs des monoamines et l’émergence des systèmes motivationnels et émotionnels chez les vertébrés. Bull Acad Natl Med 182:1505–1516PubMedGoogle Scholar
  57. Xhaard H, Rantanen V-V, Nyrönen T, Johnson MS (2006) Molecular evolution of adrenoceptors and dopamine receptors: implications for the binding of catecholamines. J Med Chem 49:1706–1719PubMedCrossRefGoogle Scholar
  58. Zheng Y, Hirschberg B, Yuan J, Wang AP, Hunt DC, Ludmerer SW, Schmatz DM, Cully DF et al (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride subunits expressed in the eye. J Biol Chem 277:2000–2005PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Chloe Burman
    • 1
  • Braudel Maqueira
    • 1
  • John Coadwell
    • 2
  • Peter D. Evans
    • 1
    Email author
  1. 1.The Inositide LaboratoryThe Babraham InstituteCambridgeUK
  2. 2.The Bioinformatics SectionThe Babraham InstituteCambridgeUK

Personalised recommendations