Invertebrate Neuroscience

, Volume 6, Issue 3, pp 123–132

The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera

Original Paper

Abstract

Members of the cys-loop ligand-gated ion channel (cys-loop LGIC) superfamily mediate neurotransmission in insects and are targets of successful insecticides. We have described the cys-loop LGIC superfamily of the honeybee, Apis mellifera, which is an important crop pollinator and a key model for social interaction. The honeybee superfamily consists of 21 genes, which is slightly smaller than that of Drosophila melanogaster comprising 23 genes. As with Drosophila, the honeybee possesses ion channels gated by acetylcholine, γ-amino butyric acid, glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel (pHCl), CG8916, CG12344 and CG6927. Similar to Drosophila, honeybee cys-loop LGIC diversity is broadened by differential splicing which may also serve to generate species-specific receptor isoforms. These findings on Apis mellifera enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.

Keywords

Alternative splicing Apis mellifera Drosophila melanogaster Insecticide targets Ion channels Neurotransmitter receptors 

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Barbara GS, Zube C, Rybak J, Gauthier M, Grunewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:823–836PubMedCrossRefGoogle Scholar
  3. Beg AA, Jorgensen EM (2003) EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 6:1145–1152PubMedCrossRefGoogle Scholar
  4. Benner SA, Cohen MA, Gonnet GH (1994) Amino acid substitution during functionally constrained divergent evolution of protein sequences. Protein Eng 7:1323–1332PubMedCrossRefGoogle Scholar
  5. Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech 45:174–183PubMedCrossRefGoogle Scholar
  6. Bicker G, Schafer S, Kingan TG (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397PubMedCrossRefGoogle Scholar
  7. Bicker G, Schafer S, Ottersen OP, Storm-Mathisen J (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 8:2108–2122PubMedGoogle Scholar
  8. Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol 54:145–156PubMedCrossRefGoogle Scholar
  9. Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19PubMedCrossRefGoogle Scholar
  10. Bornhauser BC, Meyer EP (1997) Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect. Cell Tissue Res 287:211–221PubMedCrossRefGoogle Scholar
  11. Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol 68:942–951PubMedCrossRefGoogle Scholar
  12. Buller AL, Hastings GA, Kirkness EF, Fraser CM (1994) Site-directed mutagenesis of N-linked glycosylation sites on the gamma-aminobutyric acid type A receptor alpha 1 subunit. Mol Pharmacol 46:858–865PubMedGoogle Scholar
  13. Celie PH, Klaassen RV, van Rossum-Fikkert SE, van Elk R, van Nierop P, Smit AB, Sixma TK (2005) Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J Biol Chem 280:26457–26466PubMedCrossRefGoogle Scholar
  14. Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458PubMedCrossRefGoogle Scholar
  15. Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP (1996) Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem 271:20187–20191PubMedCrossRefGoogle Scholar
  16. Dacher M, Lagarrigue A, Gauthier M (2005) Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130:37–50PubMedCrossRefGoogle Scholar
  17. Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delegue MH (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57:410–419PubMedCrossRefGoogle Scholar
  18. Dent JA (2006) Evidence for a diverse cys-loop ligand-gated ion channel superfamily in early bilateria. J Mol Evol 62:523–535PubMedCrossRefGoogle Scholar
  19. Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Biochem Sci 16:478–481PubMedCrossRefGoogle Scholar
  20. Dyrlov Bendtsen J, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefGoogle Scholar
  21. El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39PubMedCrossRefGoogle Scholar
  22. Ernst M, Brauchart D, Boresch S, Sieghart W (2003) Comparative modeling of GABA(A) receptors: limits, insights, future developments. Neuroscience 119:933–943PubMedCrossRefGoogle Scholar
  23. Fayyazuddin A, Zaheer MA, Hiesinger PR, Bellen HJ (2006) The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biol 4:e63PubMedCrossRefGoogle Scholar
  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  25. ffrench-Constant RH, Rocheleau TA (1993) Drosophila gamma-aminobutyric acid receptor gene Rdl shows extensive alternative splicing. J Neurochem 60:2323–2326PubMedCrossRefGoogle Scholar
  26. Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451PubMedCrossRefGoogle Scholar
  27. Gauthier M, Dacher M, Thany SH, Niggebrugge C, Deglise P, Kljucevic P, Armengaud C, Grunewald B (2006) Involvement of alpha-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem (in press)Google Scholar
  28. Gengs C, Leung HT, Skingsley DR, Iovchev MI, Yin Z, Semenov EP, Burg MG, Hardie RC, Pak WL (2002) The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J Biol Chem 277:42113–42120PubMedCrossRefGoogle Scholar
  29. Gepner JI, Hall LM, Sattelle DB (1978) Insect acetylcholine receptors as a site of insecticide action. Nature 276:188–190PubMedCrossRefGoogle Scholar
  30. Gisselmann G, Plonka J, Pusch H, Hatt H (2004) Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol 142:409–413PubMedCrossRefGoogle Scholar
  31. Gisselmann G, Pusch H, Hovemann BT, Hatt H (2002) Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat Neurosci 5:11–12PubMedCrossRefGoogle Scholar
  32. Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519–1533PubMedGoogle Scholar
  33. Griffon N, Buttner C, Nicke A, Kuhse J, Schmalzing G, Betz H (1999) Molecular determinants of glycine receptor subunit assembly. Embo J 18:4711–4721PubMedCrossRefGoogle Scholar
  34. Grunewald B, Wersing A, Wustenberg DG (2004) Learning channels. Cellular physiology of odor processing neurons within the honeybee brain. Acta Biol Hung 55:53–63PubMedCrossRefGoogle Scholar
  35. Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191PubMedCrossRefGoogle Scholar
  36. Hamasaka Y, Nassel DR (2006) Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J Comp Neurol 494:314–330PubMedCrossRefGoogle Scholar
  37. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149PubMedCrossRefGoogle Scholar
  38. Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836PubMedCrossRefGoogle Scholar
  39. Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH (1997) Molecular biology of insect neuronal GABA receptors. Trends Neurosci 20:578–583PubMedCrossRefGoogle Scholar
  40. Hosie AM, Buckingham SD, Presnail JK, Sattelle DB (2001) Alternative splicing of a Drosophila GABA receptor subunit gene identifies determinants of agonist potency. Neuroscience 102:709–714PubMedCrossRefGoogle Scholar
  41. Hosler JS, Buxton KL, Smith BH (2000) Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behav Neurosci 114:514–525PubMedCrossRefGoogle Scholar
  42. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ (2006) The PROSITE database. Nucleic Acids Res 34:D227–230PubMedCrossRefGoogle Scholar
  43. Humbert JP, Matter N, Artault JC, Koppler P, Malviya AN (1996) Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem 271:478–485PubMedCrossRefGoogle Scholar
  44. Iovchev M, Boutanaev A, Ivanov I, Wolstenholme A, Nurminsky D, Semenov E (2006) Phylogenetic shadowing of a histamine-gated chloride channel involved in insect vision. Insect Biochem Mol Biol 36:10–17PubMedCrossRefGoogle Scholar
  45. Jones AK, Grauso M, Sattelle DB (2005) The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85:176–187PubMedCrossRefGoogle Scholar
  46. Jones AK, Raymond-Delpech V, Thany SH, Gauthier M, Sattelle DB (2006) The nicotinic acetylcholine receptor gene family of the honeybee, Apis mellifera. Gen Res (in press)Google Scholar
  47. Keramidas A, Moorhouse AJ, Schofield PR, Barry PH (2004) Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol 86:161–204PubMedCrossRefGoogle Scholar
  48. Kondrashov FA, Koonin EV (2001) Origin of alternative splicing by tandem exon duplication. Hum Mol Genet 10:2661–2669PubMedCrossRefGoogle Scholar
  49. Lambin M, Armengaud C, Raymond S, Gauthier M (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 48:129–134PubMedCrossRefGoogle Scholar
  50. Lansdell SJ, Millar NS (2000) Cloning and heterologous expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology 39:2604–2614PubMedCrossRefGoogle Scholar
  51. Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793PubMedCrossRefGoogle Scholar
  52. Lozano VC, Armengaud C, Gauthier M (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol A 187:249–254PubMedCrossRefGoogle Scholar
  53. Lozano VC, Bonnard E, Gauthier M, Richard D (1996) Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behav Brain Res 81:215–222PubMedCrossRefGoogle Scholar
  54. Marius P, Guerra MT, Nathanson MH, Ehrlich BE, Leite MF (2006) Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 39:65–73PubMedCrossRefGoogle Scholar
  55. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580PubMedCrossRefGoogle Scholar
  56. Nishizaki T (2003) N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance. Brain Res Mol Brain Res 114:172–176PubMedCrossRefGoogle Scholar
  57. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  58. Ranganathan R, Cannon SC, Horvitz HR (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470–475PubMedCrossRefGoogle Scholar
  59. Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB (2005) Ion channels: molecular targets of neuroactive insecticides. Invert Neurosci 5:119–133PubMedCrossRefGoogle Scholar
  60. Reeves DC, Lummis SC (2002) The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (review). Mol Membr Biol 19:11–26PubMedCrossRefGoogle Scholar
  61. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  62. Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC (2005) Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays 27:366–376PubMedCrossRefGoogle Scholar
  63. Schnizler K, Saeger B, Pfeffer C, Gerbaulet A, Ebbinghaus-Kintscher U, Methfessel C, Franken EM, Raming K, Wetzel CH, Saras A, Pusch H, Hatt H, Gisselmann G (2005) A novel chloride channel in Drosophila melanogaster is inhibited by protons. J Biol Chem 280:16254–16262PubMedCrossRefGoogle Scholar
  64. Seeburg PH (2002) A-to-I editing: new and old sites, functions and speculations. Neuron 35:17–20PubMedCrossRefGoogle Scholar
  65. Semenov EP, Pak WL (1999) Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J Neurochem 72:66–72PubMedCrossRefGoogle Scholar
  66. Shimomura M, Yokota M, Matsuda K, Sattelle DB, Komai K (2004) Roles of loop C and the loop B–C interval of the nicotinic receptor alpha subunit in its selective interactions with imidacloprid in insects. Neurosci Lett 363: 195–198PubMedCrossRefGoogle Scholar
  67. Sine SM, Engel AG (2006) Recent advances in Cys-loop receptor structure and function. Nature 440: 448–455PubMedCrossRefGoogle Scholar
  68. Smart TG (1997) Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr Opin Neurobiol 7: 358–367PubMedCrossRefGoogle Scholar
  69. Smit AB, Brejc K, Syed N, Sixma TK (2003) Structure and function of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Ann N Y Acad Sci 998:81–92PubMedCrossRefGoogle Scholar
  70. Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74PubMedCrossRefGoogle Scholar
  71. Suh KS, Mutoh M, Nagashima K, Fernandez-Salas E, Edwards LE, Hayes DD, Crutchley JM, Marin KG, Dumont RA, Levy JM, Cheng C, Garfield S, Yuspa SH (2004) The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J Biol Chem 279:4632–4641PubMedCrossRefGoogle Scholar
  72. Swensen AM, Golowasch J, Christie AE, Coleman MJ, Nusbaum MP, Marder E (2000) GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol 203:2075–2092PubMedGoogle Scholar
  73. Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G (2005) Apisalpha2, Apisalpha7–1 and Apisalpha7–2: three new neuronal nicotinic acetylcholine receptor alpha-subunits in the honeybee brain. Gene 344:125–132PubMedCrossRefGoogle Scholar
  74. Thany SH, Gauthier M (2005) Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 1039:216–219PubMedCrossRefGoogle Scholar
  75. Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M (2003) Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 12:255–262PubMedCrossRefGoogle Scholar
  76. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  77. Tomizawa M, Casida JE (2001) Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag Sci 57:914–922PubMedCrossRefGoogle Scholar
  78. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268PubMedCrossRefGoogle Scholar
  79. Vassilatis DK, Elliston KO, Paress PS, Hamelin M, Arena JP, Schaeffer JM, Van der Ploeg LH, Cully DF (1997) Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels. J Mol Evol 44:501–508PubMedCrossRefGoogle Scholar
  80. The Honey Bee Genome Sequencing Consortium (2006) The genome of a highly social species, the honey bee Apis mellifera. Nature (in press)Google Scholar
  81. Zhang W, Han XY, Wong SM, Takeuchi H (1997) Pharmacologic characteristics of excitatory gamma-amino-butyric acid (GABA) receptors in a snail neuron. Gen Pharmacol 28:45–53PubMedGoogle Scholar
  82. Zheng Y, Hirschberg B, Yuan J, Wang AP, Hunt DC, Ludmerer SW, Schmatz DM, Cully DF (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J Biol Chem 277:2000–2005PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, Le Gros Clark BuildingUniversity of OxfordOxfordUK

Personalised recommendations