Advertisement

Invertebrate Neuroscience

, Volume 6, Issue 3, pp 105–122 | Cite as

Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: a model to define gene function in a simple neural system

  • Christopher J. Franks
  • Lindy Holden-Dye
  • Kathryn Bull
  • Sarah Luedtke
  • Robert J. Walker
Review

Abstract

Invertebrate neuroscience has provided a number of very informative model systems that have been extensively utilized in order to define the neurobiological bases of animal behaviours (Sattelle and Buckingham in Invert Neurosci 6:1–3, 2006). Most eminent among these are a number of molluscs, including Aplysia californica, Lymnaea stagnalis and Helix aspersa, crustacean systems such as the crab stomatogastric ganglion and a wide-range of other arthropods. All of these have been elegantly exploited to shed light on the very important phenomenon of the molecular and cellular basis for synaptic regulation that underpins behavioural plasticity. Key to the successful use of these systems has been the ability to study well-defined, relatively simple neuronal circuits that direct and regulate a quantifiable animal behaviour. Here we describe the pharyngeal system of the nematode C. elegans and its utility as a model for defining the genetic basis of behaviour. The circuitry of the nervous system in this animal is uniquely well-defined. Furthermore, the feeding behaviour of the worm is controlled by the activity of the pharynx and this in turn is regulated in a context-dependent manner by a simple nervous system that integrates external signals, e.g. presence or absence of food, and internal signals, e.g. the nutritional status of the animal to direct an appropriate response. The genetics of C. elegans is being effectively exploited to provide novel insight into genes that function to regulate the neuronal network that controls the pharynx. Here we summarise the progress to date and highlight topics for future research. Two main themes emerge. First, although the anatomy of the pharyngeal system is very well-defined, there is a much poorer understanding of its neurochemistry. Second, it is evident that the neurochemistry is remarkably complex for such a simple circuit/behaviour. This suggests that the pharyngeal activity may be subject to exquisitely precise regulation depending on the animal’s environment and status. This therefore provides a very tractable genetic model to investigate neural mechanisms for signal integration and synaptic plasticity in a well-defined neuronal network that directs a quantifiable behaviour, feeding.

Keywords

C. elegans Pharynx Ion channels Receptors Neurotransmitters Neuropeptides Electrophysiology Behaviour Genetics Feeding 

References

  1. Albertson DG, Thomson JN (1976) The pharynx of Caenorhabditis elegans. Phil Trans Roy Soc Lond B 275:299–325CrossRefGoogle Scholar
  2. Aptel N, Cook A, Pemberton D, Portillo V, Rogers C, Holden-Dye L, Wolstenholme A (2001) The physiological roles of AVR-14 in C. elegans and the parasite Haemonchus contortus. Intl Worm Meeting Abstr 690Google Scholar
  3. Avery L (1993a) Motor-neuron M3 controls pharyngeal muscle-relaxation timing in Caenorhabditis elegans. J Exp Biol 175:283–297Google Scholar
  4. Avery L (1993b) The genetics of feeding in Caenorhabditis elegans. Genetics 133:897–917Google Scholar
  5. Avery L, Horvitz HR (1987) A cell that dies during wild type Caenorhabditis elegans development can function as a neuron in a ced-3 mutant. Cell 51:1071–1078PubMedCrossRefGoogle Scholar
  6. Avery L, Horvitz R (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous-system of C. elegans. Neuron 3:473–485PubMedCrossRefGoogle Scholar
  7. Avery L, Horvitz HR (1990) Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool 253:263–270PubMedCrossRefGoogle Scholar
  8. Avery L, Shtonda BB (2003) Food transport in the C. elegans pharynx. J Exp Biol 206:2441–2457PubMedCrossRefGoogle Scholar
  9. Avery L, Thomas JH (1997) Feeding and defecation. In: Riddle DL, Blumenthal T, Meyer BJ, Preiss JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 679–716Google Scholar
  10. Avery L, Raizen D, Lockery S (1995) Electrophysiological methods. Meth Cell Biol 48:251–269CrossRefGoogle Scholar
  11. Baylis HA, Furuichi T, Yoshikawa F, Mikoshiba K, Sattelle DB (1999) Inositol 1,4,5-triphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene (itr-1). J Mol Biol 294:467–476PubMedCrossRefGoogle Scholar
  12. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedGoogle Scholar
  13. Brockie PJ, Mellem JE, Hills T, Masden DM, Maricq AV (2001) The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31:617–630PubMedCrossRefGoogle Scholar
  14. Cambova P, Hubka P, Sulkova I, Hulin I (2003) The pacemaker activity of interstitial cells of Cajal and gastric electrical activity. Physiol Res 52:275–284Google Scholar
  15. Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5:956–974PubMedGoogle Scholar
  16. Chiang JTA, Steciuk M, Shtonda B, Avery L (2006) Evolution of pharyngeal behavior and neuronal function in free-living soil nematodes. J Exp Biol 209:1859–1873PubMedCrossRefGoogle Scholar
  17. Coates JC, de Bono M (2002) Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature 419:925–929PubMedCrossRefGoogle Scholar
  18. Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9:869–877PubMedCrossRefGoogle Scholar
  19. Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711PubMedCrossRefGoogle Scholar
  20. Davis MW, Somerville D, Lee RyN, Lockery S, Avery L, Fambrough DM (1995) Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell-function. J Neurosci 15:8408–8418PubMedGoogle Scholar
  21. Davis MW, Fleischauer R, Dent JA, Joho RH, Avery L (1999) A mutation in the C. elegans EXP-2 potassium channel that alters feeding behavior. Science 286:2501–2504PubMedCrossRefGoogle Scholar
  22. de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C. elegans. Ann Rev Neurosci 28:451–501PubMedCrossRefGoogle Scholar
  23. Dent JA, Davis MW, Avery L (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16:5867–5879PubMedCrossRefGoogle Scholar
  24. Doncaster CC (1962) Nematode feeding mechanisms. I. Observations on Rhabditis and Pelodera. Nematologica 8:313–320CrossRefGoogle Scholar
  25. Franks CJ, Pemberton D, Vinogradova I, Walker RJ, Holden-Dye L (2002) The ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans. J Neurophysiol 87:954–961PubMedGoogle Scholar
  26. Hadju-Cronin YM, Chen WG, Patikoglou G, Koelle MR, Sternberg PW (1999) Goa and Gqa in Caenorhabditis elegans the RGS protein EAT-16 is necessary for Goa signaling and regulates Gqa activity. Genes Dev 13:1780–1793CrossRefGoogle Scholar
  27. Hamdan FF, Ungrin MD, Abramovitz M, Ribiero P (1999) Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem 72: 1372–1383PubMedCrossRefGoogle Scholar
  28. Harris TW, Hartweig EA, Horvitz HR, Jorgensen EM (2000) Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 150:589–599PubMedCrossRefGoogle Scholar
  29. Hobson RJ, Geng J, Gray AD, Komuniecki RW (2003) Ser-7b, a constitutively active G alpha coupled 5-HT7 like receptor expressed in the Caenorhabditis elegans M4 pharynx motorneuron. J Neurochem 87:22–29PubMedCrossRefGoogle Scholar
  30. Hobson RJ, Hapiak VM, Xiao H, Buehrer KL, Komuniecki PR, Komuniecki RW (2006) SER-7 a Caenorhabditis elegans 5HT7-like receptor is essential for the 5-HT stimulation of pharyngeal pumping and egg-laying. Genetics 172:159–169PubMedCrossRefGoogle Scholar
  31. Horridge GA (1968) The origins of the nervous system. In: Bourne GH (ed) The structure and function of nervous tissue, vol. 1. Academic, New York, pp 1–31Google Scholar
  32. Iwasaki K, Staunton J, Saifee O, Nonet M, Thomas JH (1997) aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18:613–622PubMedCrossRefGoogle Scholar
  33. Horvitz HR, Chalfie M, Sulston JE, Evans PD (1982) Serotonin and octopamine in the nematode C. elegans. Science 216:1012–1014PubMedCrossRefGoogle Scholar
  34. Johnson CD, Reinitz CA, Sithigorngul P, Stretton AOW (1996) Neuronal localization of serotonin in the nematode Ascaris suum. J Comp Neurol 367:352–360PubMedCrossRefGoogle Scholar
  35. Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. BioEssays 26:39–49PubMedCrossRefGoogle Scholar
  36. Keane J, Avery L (2003) Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via Ivermectin sensitivity genes. Genetics 164:153–162PubMedGoogle Scholar
  37. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsein RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle. Neuron 26:583–594PubMedCrossRefGoogle Scholar
  38. Kim K, Li C (2004) Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475:540–550PubMedCrossRefGoogle Scholar
  39. Komuniecki RW, Hobson RJ, Rex EB, Hapiak VM, Komuniecki PR (2004) Biogenic amine receptors in parasitic nematodes: what can be learned from Caenorhabditis elegans. Mol Biochem Parasitol 137:1–11PubMedCrossRefGoogle Scholar
  40. Koushika SP, Richmond JE, Hadwiger G, Weimer RM, Jorgensen EM, Nonet ML (2001) A post-docking role for active zone protein RIM. Nature Neurosci 4:997–1005PubMedCrossRefGoogle Scholar
  41. Landell SJ, Gee VJ, Harkness PC, Doward AI, Baker ER, Gibb AJ, Millar AS (2005) RIC-3 enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in mammalian cells. Mol Pharmacol 68:1431–1438CrossRefGoogle Scholar
  42. Laughton DL, Lunt GG, Wolstenholme AJ (1997) Alternative splicing of a Caenorhabditis elegans gene produces two novel inhibitory amino acid receptor subunits with identical ligand binding domains but different ion channels. Gene 201:119–125PubMedCrossRefGoogle Scholar
  43. Lee RN, Lobel L, Hengartner M, Horvitz HR, Avery L (1997) Mutations in the alpha 1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J 16:6066–6076PubMedCrossRefGoogle Scholar
  44. Lee RYN, Chalfie M, Horvitz HR, Avery L (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate co-trnasporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159–167PubMedGoogle Scholar
  45. Li C (2005) The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitol 131:S109−S127CrossRefGoogle Scholar
  46. Li S, Dent R (2003) Regulation of intramuscular electrical coupling by the Caenorhabditis elegans innexin INX-6. Cell 14:2630–2644Google Scholar
  47. Li HY, Avery L, Denk W, Hess GP (1997) Identification of chemical synapses in the pharynx of Caenorhabditis elegans. Proc Natl Acad Sci USA 94:5912–5916PubMedCrossRefGoogle Scholar
  48. Livingston D (1991) Studies on the unc-31 gene of Caenorhabditis elegans. PhD thesis. University of Cambridge, CambridgeGoogle Scholar
  49. Long de J, Meng Y, Dent J, Hekimi S (2004) Thiamine pyrophosphate biosynthesis and transport in the nematode Caenorhabditis elegans. Genetics 168:845–854CrossRefGoogle Scholar
  50. Maryon EB, Coronado R, Anderson P (1996) unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle-contraction. J Cell Biol 134:885–893PubMedCrossRefGoogle Scholar
  51. Maryon EB, Saari B, Anderson P (1998) Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans. J Cell Sci 111:2885–2895PubMedGoogle Scholar
  52. Maynard DM (1955) Activity of a crustacean ganglion. II. Pattern and interaction in burst formation. Biol Bull 109:420–436CrossRefGoogle Scholar
  53. McKay JP, Raizen DM, Gottschalk A, Schafer WR, Avery L (2004) eat-2 and eat-18 are required for nicotinic transmission in the Caenorhabditis elegans pharynx. Genetics 166:161–169PubMedCrossRefGoogle Scholar
  54. Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98:14000–14005PubMedCrossRefGoogle Scholar
  55. Nguyen M, Alfonso A, Johnson CD, Rand JB (1995) Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140:527–535PubMedGoogle Scholar
  56. Niacaris T, Avery L (2003) Serotonin regulates repolarization of the C. elegans pharyngeal muscle. J Exp Biol 206: 223–231PubMedCrossRefGoogle Scholar
  57. Nonet ML, Grundahl K, Meyer BI, Rand JB (1993) Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73:1291–1305PubMedCrossRefGoogle Scholar
  58. Nonet ML, Holgado AM, Brewer F, Serpe CJ, Norbeck BA, Holleran J, Wei L, Hartweig EA, Jorgensen EM, Alfonso A (1999) UNC-11, a Caenorhabditis elegans AP 180 homologue, regulates the size and protein composition of synaptic vesicles. Mol Biol Cell 10:2343–2360PubMedGoogle Scholar
  59. Olde B, McCombie WR (1997) Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci 8:53–62PubMedCrossRefGoogle Scholar
  60. Papaioannou S, Marsden D, Franks CJ, Walker RJ, Holden-Dye L (2005) Role of a FMRFaimde-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 65:304–319PubMedCrossRefGoogle Scholar
  61. Pelham HRB (1993) Neurotransmission and secretion. Nature 364:582PubMedCrossRefGoogle Scholar
  62. Pemberton DJ (2001) Studies in to the functinoal properties of the pharyngeal muscle of Caenorhaditis elegans. PhD Thesis, University of Southampton, SouthamptonGoogle Scholar
  63. Pemberton D, Franks C, Walker R, Holden-Dye L (2001) Characterisation of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-α2 in the function of the native receptor. Mol Pharmacol 59:1037–1043PubMedGoogle Scholar
  64. Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245PubMedCrossRefGoogle Scholar
  65. Raizen DM, Avery L (1994) Electrical-activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 12:483–495PubMedCrossRefGoogle Scholar
  66. Raizen DM, Lee RN, Avery L (1995) Interacting genes required for pharyngeal excitation by motor-neuron mc in Caenorhabditis elegans. Genetics 141:1365–1382PubMedGoogle Scholar
  67. Rand JB, Duerr JS, Frisby DL (2000) Neurogenetics of vesicular transporters in C. elegans. FASEB J 14:2414–2422PubMedCrossRefGoogle Scholar
  68. Ranganathan R, Cannon SC, Horvitz HR (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470–475PubMedCrossRefGoogle Scholar
  69. Ranganathan R, Sawin ER, Trent C, Horvitz HR (2001) Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J Neurosci 21:5871–5874PubMedGoogle Scholar
  70. Robatzek M, Niacaris T, Steger K, Avery L, Thomas JH (2001) eat-11 encodes GPB-2, a G-beta(5) ortholog that interacts with G(o)alpha and G(q)alpha to regulate C. elegans behaviour. Curr Biol 11:288–293PubMedCrossRefGoogle Scholar
  71. Rex E, Komuniecki RW (2002) Characterization of a tyramine receptor in Caenorhabditis elegans. J Neurochem 82:1352–1359PubMedCrossRefGoogle Scholar
  72. Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine and FMRFamide-like neuropeptides. J Neurobiol 49:235–244PubMedCrossRefGoogle Scholar
  73. SakubeY, Ando H, Kagawa H (1993) Cloning and mapping of a ryanodine receptor homologue gene of Caenorhabditis elegans. Ann NY Acad Sci 707:540–545CrossRefGoogle Scholar
  74. Sattelle DB, Buckingham SD (2006) Invertebrate studies and their ongoing contributions to neuroscience. Invert Neurosci 6:1–3PubMedCrossRefGoogle Scholar
  75. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotion rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631PubMedCrossRefGoogle Scholar
  76. Schafer WR, Kenyon CJ (1995) A calcium channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375:73–78PubMedCrossRefGoogle Scholar
  77. Schafer WR, Sanchez BM, Kenyon CJ (1996) Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics 143:1219–1230PubMedGoogle Scholar
  78. Selverston AI, Russell DF, Miller JP, King DG (1976) The stomatogastric nervous system: structure and function of a small neural network. Prog Neurobiol 7:215–290PubMedCrossRefGoogle Scholar
  79. Shibata Y, Fujii T, Dent JA, Fujisawa H, Takagi S (2000) EAT-20, a novel transmembrane protein with EGF motifs, is required for efficient feeding in Caenorhabditis elegans. Genetics 154:635–646PubMedGoogle Scholar
  80. Shimozono S, Fukano T, Kimura KD, Mori I, Kirino Y, Miyawaki A (2004) Slow calcium dynamics in pharyngeal muscle in Caenorhabditis elegans during fast pumping. EMBO Rep 5:521–526PubMedCrossRefGoogle Scholar
  81. Shtonda B, Avery L (2005) CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx. J Exp Biol 208:2177–2190PubMedCrossRefGoogle Scholar
  82. Starich T, Lee R, Panzarella C, Avery L, Shaw J (1996) eat-5 and unc-7 represent a multi-gene family in Caenorhabditis elegans involved in cell-cell coupling. J Cell Biol 134:537–548PubMedCrossRefGoogle Scholar
  83. Starich T, Sheehan M, Jadrich J, Shaw J (2001) Innexins in C. elegans. Cell Comm Adhes Res 8:311–314CrossRefGoogle Scholar
  84. Starich T, Miller A, Nguyen R, Hall D, Shaw J (2003) The Caenorhabditis elegans innexin INX-3 is localized to gap-junctions and is essential for embryonic development. Dev Biol 256:403–417PubMedCrossRefGoogle Scholar
  85. Steger KA, Avery L (2004) The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 167:643CrossRefGoogle Scholar
  86. Steger KA, Shtonda BB, Thacker C, Snutch TP, Avery L (2005) The C. elegans T-type calcium channel CCA-1 boosts neuromuscular transmission. J Exp Biol 208:2191–2203PubMedCrossRefGoogle Scholar
  87. Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564PubMedCrossRefGoogle Scholar
  88. Towers PR, Edwards B, Richmond JE, Sattelle DB (2005) The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 93:1–9PubMedCrossRefGoogle Scholar
  89. Tsalik EL, Niacaris T, Wenick ASPK, Avery L, Hobert O (2003) LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 263:81–102PubMedCrossRefGoogle Scholar
  90. Vinogradova I, Cook A, Holden-Dye L (2006) The ionic dependence of voltage-activated inward currents in the pharyngeal muscle of Caenorhabditis elegans. Inv Neurosci (E pub ahead of print)Google Scholar
  91. Walker DS, Gower NJ, Ly S, Bradley GL, Baylis HA (2002) Regulated disruption of inositol 1,4,5-triphosphate signalling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell 13:1329–1337PubMedCrossRefGoogle Scholar
  92. Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160:313–338PubMedCrossRefGoogle Scholar
  93. White J, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the the nematode Caenorhabditis elegans. Philos Trans Roy Soc Lond B Biol Sci 314:1–340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Christopher J. Franks
    • 1
  • Lindy Holden-Dye
    • 1
  • Kathryn Bull
    • 1
  • Sarah Luedtke
    • 1
  • Robert J. Walker
    • 1
  1. 1.School of Biological Sciences, Bassett Crescent EastUniversity of SouthamptonSouthamptonUK

Personalised recommendations