Invertebrate Neuroscience

, Volume 5, Issue 3–4, pp 147–155 | Cite as

Sgβ1, a novel locust (Schistocerca gregaria) non-α nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster Dβ1 subunit

  • A. K. Jones
  • J. Marshall
  • A. D. Blake
  • S. D. Buckingham
  • M. G. Darlison
  • D. B. Sattelle
Original Article


The cloning, sequencing and functional expression of Sgβ1, a novel locust (Schistocerca gregaria) non-α nicotinic acetylcholine receptor (nAChR) subunit is described. This subunit shows 80% identity with the Drosophila melanogaster Dβ1 and 92% identity with the Locusta migratoria β1, non-α subunits but only 38% identity to Sgα1 (also referred to as αL1), a previously cloned S. gregaria nAChR α-subunit. When expressed in Xenopus laevis oocytes, Sgβ1 does not respond to nicotine. Responses to nicotine are observed, however, in oocytes co-expressing Sgα1 and Sgβ1, but the pharmacology is indistinguishable from that of currents produced by expressing Sgα1 alone. We conclude that either Sgβ1 does not co-assemble with Sgα1, or that it is unable to contribute to the functional properties of the receptor, in the Xenopus oocyte expression system.


Nicotinic acetylcholine receptor Locust (Schistocerca gregariaSgβ1 non-α subunit Xenopus oocyte expression Nicotinic receptor ligands 



The authors are indebted to Eric Barnard, Ann Stephenson, Leslie Blair, Vince Dionne, Jonathan David, Ed Levitan, Ryuzo Shingai, Anthony Kerlevagge, and Mike Goosey for helpful discussions during the course of this work. The financial support of the Medical Research Council, the Agricultural and Food Research Council and Shell Research Ltd., UK is gratefully acknowledged.


  1. Ben-Ami HC, Yassin L, Farah H et al (2005) RIC-3 affects properties and quantity of nicotinic acetylcholine receptors via a mechanism that does not require the coiled-coil domains. J Biol Chem 280:28053–28060CrossRefPubMedGoogle Scholar
  2. Chamaon K, Schulz R, Smalla KH, Seidel B, Gundelfinger ED (2000) Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: the alpha-subunit dalpha3 and the beta-type subunit ARD co-assemble within the same receptor complex. FEBS Lett 482:189–192CrossRefPubMedGoogle Scholar
  3. Chamaon K, Smalla KH, Thomas U, Gundelfinger ED (2002) Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co-assemble into the same receptor complex. J Neurochem 80:149–157CrossRefPubMedGoogle Scholar
  4. Chen D, Dang H, Patrick JW (1998) Contributions of N-linked glycosylation to the expression of a functional alpha7-nicotinic receptor in Xenopus oocytes. J Neurochem 70:349–357PubMedGoogle Scholar
  5. Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458CrossRefPubMedGoogle Scholar
  6. Courjaret R, Grolleau F, Lapied B (2003) Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur J Neurosci 17:2023–2034CrossRefPubMedGoogle Scholar
  7. Drummond DR, Armstrong J, Colman A (1985) The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res 13:7375–7394PubMedGoogle Scholar
  8. Dyrlov Bendtsen J, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefPubMedGoogle Scholar
  9. Falquet L, Pagni M, Bucher P et al (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238CrossRefPubMedGoogle Scholar
  10. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13CrossRefPubMedGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  12. Fenster CP, Beckman ML, Parker JC et al (1999) Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Mol Pharmacol 55:432–443PubMedGoogle Scholar
  13. Fitzgerald J, Kennedy D, Viseshakul N et al (2000) UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein. Brain Res 877:110–123CrossRefPubMedGoogle Scholar
  14. Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519–1533PubMedGoogle Scholar
  15. Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269CrossRefPubMedGoogle Scholar
  16. Halevi S, Yassin L, Eshel M et al (2003) Conservation within the RIC-3 gene family. Effectors of mammalian nicotinic acetylcholine receptor expression. J Biol Chem 278:34411–34417CrossRefPubMedGoogle Scholar
  17. Hanke W, Breer H (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature 321:171–174CrossRefPubMedGoogle Scholar
  18. Hanke W, Breer H (1987) Characterization of the channel properties of a neuronal acetylcholine receptor reconstituted into planar lipid bilayers. J Gen Physiol 90:855–879CrossRefPubMedGoogle Scholar
  19. Hanke W, Breer H (1989) Reconstitution of acetylcholine receptors into planar lipid bilayers. Subcell Biochem 14:339–362PubMedGoogle Scholar
  20. Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836Google Scholar
  21. Huang Y, Williamson MS, Devonshire AL et al (2000) Cloning, heterologous expression and co-assembly of Mpbeta1, a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae. Neurosci Lett 284:116–120CrossRefPubMedGoogle Scholar
  22. Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26:39–49CrossRefGoogle Scholar
  23. Jones AK, Elgar G, Sattelle DB (2003) The nicotinic acetylcholine receptor gene family of the pufferfish, Fugu rubripes. Genomics 82:441–451CrossRefPubMedGoogle Scholar
  24. Jones AK, Grauso M, Sattelle DB (2005) The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85:176–187CrossRefGoogle Scholar
  25. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114CrossRefPubMedGoogle Scholar
  26. Lansdell SJ, Millar NS (2000) Cloning and heterologous expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology 39:2604–2614CrossRefGoogle Scholar
  27. Liu Z, Williamson MS, Lansdell SJ et al (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 102:8420–8425CrossRefGoogle Scholar
  28. Marshall J, Buckingham SD, Shingai R et al (1990) Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. Embo J 9:4391–4398PubMedGoogle Scholar
  29. Matsuda K, Buckingham SD, Kleier D et al (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580CrossRefPubMedGoogle Scholar
  30. Millar NS (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans 31:869–874CrossRefPubMedGoogle Scholar
  31. Nishizaki T (2003) N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance. Brain Res Mol Brain Res 114:172–176CrossRefPubMedGoogle Scholar
  32. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  34. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  35. Sattelle DB (1988) Synaptic and extrasynaptic neuronal nicotinic receptors of insects. In: Lunt GG (ed) The molecular basis of drug and pesticide action, Amsterdam Elsevier, pp 563–582Google Scholar
  36. Sattelle DB, Jones AK, Sattelle BM et al (2005) Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays 27:366–376CrossRefGoogle Scholar
  37. Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905CrossRefPubMedGoogle Scholar
  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  39. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268CrossRefPubMedGoogle Scholar
  40. Vermehren A, Trimmer BA (2005) Expression and function of two nicotinic subunits in insect neurons. J Neurobiol 62:289–298CrossRefPubMedGoogle Scholar
  41. Wecker L, Guo X, Rycerz AM, Edwards SC (2001) Cyclic AMP-dependent protein kinase (PKA) and protein kinase C phosphorylate sites in the amino acid sequence corresponding to the M3/M4 cytoplasmic domain of alpha4 neuronal nicotinic receptor subunits. J Neurochem 76:711–720CrossRefPubMedGoogle Scholar
  42. White MM, Mayne KM, Lester HA, Davidson N (1985) Mouse-torpedo hybrid acetylcholine receptors: functional homology does not equal sequence homology. Proc Natl Acad Sci USA 82:4852–4856PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. K. Jones
    • 1
  • J. Marshall
    • 2
  • A. D. Blake
    • 3
  • S. D. Buckingham
    • 1
  • M. G. Darlison
    • 4
  • D. B. Sattelle
    • 1
  1. 1.MRC Functional Genetics Unit, Department of Human Anatomy and GeneticsUniversity of OxfordOxford OX1UK
  2. 2.Brown University, ProvidenceRhode IslandUSA
  3. 3.Seton Hall UniversitySouth Orange, New JerseyUSA
  4. 4.Department of Life Sciences, Neuroscience and Signal Transduction Laboratory, School of Biomedical and Natural Sciences, College of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations