Invertebrate Neuroscience

, Volume 5, Issue 3–4, pp 119–133 | Cite as

Ion channels: molecular targets of neuroactive insecticides

  • Valérie Raymond-Delpech
  • Kazuhiko Matsuda
  • Benedict M. Sattelle
  • James J. Rauh
  • David B. Sattelle
Review

Abstract

Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p′-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); γ-aminobutyric acid (GABA) receptors (cyclodienes, γ-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.

Keywords

Molecular targets of insecticides Sodium channels Ionotropic receptors Resistance genes 

Notes

Acknowledgement

The authors thank Jeff Bloomquist, Daniel Cordova and Steven Buckingham for helpful discussions and comments on an earlier draft of the manuscript.

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195CrossRefPubMedGoogle Scholar
  2. Adelsberger H, Lepier A, Dudel J (2000) Activation of rat recombinant α1β2γ2S GABAA receptor by the insecticide ivermectin. Eur J Pharmacol 394:163–170CrossRefGoogle Scholar
  3. Anstead JA, Williamson MS, Denholm I (2005) Evidence for multiple origins of identical insecticide resistance mutations in the aphid Myzus persicae. Insect Biochem Mol Biol 35:249–256CrossRefGoogle Scholar
  4. Bettini S, D’Ajello V, Maroli M (1973) Cartap activity on the cockroach nervous system and neuromuscular transmission. Pestic Biochem Physiol 3:100–205CrossRefGoogle Scholar
  5. Bloomquist JR (1996) Ion channels as targets for insecticides. Ann Rev Entomol 1:163–190CrossRefGoogle Scholar
  6. Bowery NG, Collins JF, Hill RG (1976) Bicyclic phosphorus esters that are potent convulsants and GABA antagonists. Nature 261:601–603CrossRefGoogle Scholar
  7. Breer H, Sattelle DB (1987) Molecular properties and functions of insect acetylcholine receptors. J Insect Physiol 33:771–790CrossRefGoogle Scholar
  8. Bret BL, Larson LL, Schoonover JR, Sparks TC, Thompson GD (1997) Biological properties of spinosad. Down Earth 52:6–13Google Scholar
  9. Brown LD, Narahashi T (1992) Modulation of nerve membrane sodium channel activation by deltamethrin. Brain Res 584:71–76CrossRefGoogle Scholar
  10. Buckingham SD, Matsuda K, Hosie AM, Baylis HA, Squire MD, Lansdell SJ, Millar NS, Sattelle DB (1996) Wild-type and insecticide-resistant homo-oligomeric GABA receptors of Drosophila melanogaster stably expressed in a drosophila cell line. Neuropharmacol 35:1393–1401CrossRefGoogle Scholar
  11. Buckingham SD, Lapied B, Le Corronc H, Grolleau F, Sattelle DB (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200:2685–2692PubMedGoogle Scholar
  12. Castillo M, Mulet J, Gutiérrez LM, Ortiz JA, Castelan F, Gerber S, Sala S et al (2005) Dual role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. J Biol Chem 280:27062–27068CrossRefGoogle Scholar
  13. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25CrossRefGoogle Scholar
  14. Catterall WA, Goldin AL, Waxman SG (2003) International Union of Pharmacology XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev 55:575–578CrossRefGoogle Scholar
  15. Cestèle S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892CrossRefGoogle Scholar
  16. Cleland TA (1996) Inhibitory glutamate receptor channels. Mol Neurobiol 13:97–136PubMedGoogle Scholar
  17. Colliot F, Kukorowski KA, Robert DA (1992) Fipronil: a new soil and foliar broad spectrum insecticide. In: Proceedings of the Brighton crop protection conferences-pests and diseases, pp 29–34Google Scholar
  18. Courjaret R, Lapied B (2001) Complex intracellular messenger pathways regulate one type of neuronal α-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (Dorsal Unpaired Median neurons). Mol Pharmacol 60:80–91PubMedGoogle Scholar
  19. Cully DF, Wilkinson H, Vassilatis DK, Etter A, Arena JP (1996a) Molecular biology and electrophysiology of glutamate-gated chloride channels of invertebrates. Parasitol 113:S191–S200Google Scholar
  20. Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP (1996b) Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem 271:20187–20191CrossRefGoogle Scholar
  21. Deecher DC, Soderlund DM (1991) RH 3421, an insecticidal dihydropyrazole, inhibits sodium channel-dependant sodium uptake in mouse brain preparations. Pest Biochem Physiol 39:130–137CrossRefGoogle Scholar
  22. Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16CrossRefPubMedGoogle Scholar
  23. Dent JA, Smith MN, Vassilatis DK, Avery L (2000) The genetics of ivermectin resistance in Caenorhabditis elegans. Proc Natl Acad Sci USA 97:2674–2679CrossRefGoogle Scholar
  24. Duce IR, Scott RH (1985) Actions of dihydroavermectin B1a on insect muscle. Br J Pharmacol 85:395–401PubMedGoogle Scholar
  25. ffrench-Constant RH, Mortlock DP, Schaffer CD, MacIntyre RJ, Roush RT (1991) Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate γ-aminobutyric acid subtype A receptor locus. Proc Natl Acad Sci USA 88:7209–7213PubMedGoogle Scholar
  26. ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451CrossRefGoogle Scholar
  27. Gardner MJ, Hall N, Fung E, White O, Bessiman M, Hyman RW, Carlton J et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511CrossRefGoogle Scholar
  28. Gisselmann G, Plonka J, Pusch H, Hatt H (2004) Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol 142:409–413CrossRefGoogle Scholar
  29. Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dα5, Dα6 and Dα7, in Drosophila melanogaster identify a new and highly conserved target of ADAR-mediated A to I pre-mRNA editing. Genetics 160:1519–1533PubMedGoogle Scholar
  30. Grolleau F, Sattelle DB (2000) Single channel analysis of the blocking actions of BIDN and Fipronil on a Drosophila melanogaster GABA receptor (RDL) stably expressed in a Drosophila cell line. Br J Pharmacol 30:1833–1842CrossRefGoogle Scholar
  31. Gundelfinger E (1992) How complex is the nicotinic receptor system of insects? Trends Neurosci 15:206–211CrossRefGoogle Scholar
  32. Gundelfinger ED, Schulz R (2000) Insect nicotinic acetylcholine receptors: genes, structure, physiological and pharmacological properties. In: Clementi F, Fornasari D, Gotti C (eds) Neuronal nicotinic receptors. Handbook of experimental pharmacology, vol 144. Springer, Berlin Heidelberg New York, pp 497–521Google Scholar
  33. Halevi S, McKay J, Palfreyman M, Yassin L, Eshel M, Jorgensen E, Treinin M (2002) The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J 21:1012–1020CrossRefGoogle Scholar
  34. Hanrahan CJ, Palladino MJ, Bonneau LJ, Reenan RA (1999) RNA editing of a Drosophila sodium channel gene. Ann N Y Acad Sci 868:51–56PubMedGoogle Scholar
  35. Harder HH, Riley SL, McCann SF, Irving SN (1996) DPX-MP062: a novel broad-spectrum, environmentally soft, insect control compound. In: Brighton crop protection conference—pest and diseases, pp 449–454Google Scholar
  36. Hitmi A, Coudret A, Barthomeuf C (2000) The production of pyrethrins by plant cells and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit Rev Biochem Mol Biol 35:317–337CrossRefGoogle Scholar
  37. Holt R, Subramanian GM, Halpern A, Sutton GG, Charlab, Nusskern DR, Wincker P et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149Google Scholar
  38. Hoopengardner B, Bhalla T, Staker C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836Google Scholar
  39. Horoszok L, Raymond V, Sattelle DB, Wostenholme A (2001) GLC-3: a novel Fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Br J Pharmacol 132:1247–1254CrossRefPubMedGoogle Scholar
  40. Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH (1997) Molecular biology of insect neuronal GABA receptors. TINS 20:578–583PubMedGoogle Scholar
  41. Hosie AM, Buckingham SD, Presnail JK, Sattelle DB (2001) Alternative splicing of a Drosophila GABA receptor subunit gene identifies determinants of agonist potency. Neuroscience 102:709–714CrossRefGoogle Scholar
  42. Ikeda T, Zhao X, Nagata K, Kono Y, Shono T, Yeh JZ, Narahashi T (2001) Fipronil modulation of γ-aminobutric acidA receptors in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 296:914–921PubMedGoogle Scholar
  43. Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26:39–49CrossRefGoogle Scholar
  44. Jones AK, Grauso M, Sattelle DB (2005) The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85:176–187CrossRefGoogle Scholar
  45. Kane NS, Hirschberg B, Qion S, Hunt D, Thomas B, Brochu R, Ludmerer SW, Zheng Y, Smith M, Arena JP, Cohen CJ, Schmatz D, Warmke J, Cully DF (2000) Drug resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proc Natl Acad Sci USA 97:13949–13954CrossRefGoogle Scholar
  46. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nature Rev Neuroscience 3:102–114Google Scholar
  47. Knipple DC, Doyle KE, Marsella-Merrick PA, Soderlund DM (1994) Tight genetic linkage between the kdr insecticide resistance trait and a voltage-sensitive sodium channel gene in the house fly. Proc Natl Acad Sci USA 91:2483–2487PubMedGoogle Scholar
  48. Kobayashi T, Nishimura K, Fujita T (1989) Effects of the α-cyano group in the benzyl alcohol moiety on insecticidal and neurophysiological activities of pyrethroid esters. Pestic Biochem Physiol 35:231–243CrossRefGoogle Scholar
  49. Korenaga S, Ito Y, Ozoe Y, Eto M (1977) The effects of bicyclic phosphate esters on the invertebrate and vertebrate neuro-muscular junctions. Comp Biochem Physiol C 57:95–100CrossRefGoogle Scholar
  50. Krause RM, Buisson B, Bertrand S, Corringer PJ, Galzi JL, Changeux JP, Bertrand D (1998) Ivermectin: a positive allosteric effector of the alpha 7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:283–294PubMedGoogle Scholar
  51. Lansdell SJ, Millar NS (2000) Cloning and heterologous expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology 39:2604–2614CrossRefGoogle Scholar
  52. Lapied B, Grolleau F, Sattelle DB (2001) Indoxacarb, an oxadiazine insecticide blocks insect neuronal sodium channels. Br J Pharmacol 132:587–595CrossRefGoogle Scholar
  53. Laufer J, Roche M, Pelhate M, Elliot M, Janes NF, Sattelle DB (1984) Pyrethroid insecticides: actions of deltamethrin and related compounds on insect axonal sodium channels. J Insect Physiol 30:341–349CrossRefGoogle Scholar
  54. Laufer J, Pelhate M, Sattelle DB (1985) Actions of pyrethroid insecticides on insect axonal sodium channels. Pest Sci 16:651–661Google Scholar
  55. Lee SH, Smith TJ, Knipple DC, Soderlund DM (1999) Mutations in the house fly Vssc1 sodium channel gene associated super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes. Insect Biochem Mol Biol 29:185–94CrossRefGoogle Scholar
  56. Lee SH, Smith TJ, Ingles PJ, Soderlund DM (2000) Cloning and functional characterization of a putative sodium channel auxiliary subunit gene from the house fly (Musca domestica). Insect Biochem Mol Biol 30:479–487CrossRefGoogle Scholar
  57. Lindstrom J (2000) The structure of neuronal nicotinic receptors. In: Clementi F, Fornasari D, Gotti C (eds) Neuronal nicotinic receptors. Handbook of experimental pharmacology, vol 144. Springer, Berlin Heidelberg New York, pp 101–162Google Scholar
  58. Littleton JT, Ganetzky B (2000) Ion channels and synaptic organisation: analysis of the Drosophila genome. Neuron 26:35–43CrossRefGoogle Scholar
  59. Liu Z, Tan J, Valles SM, Dong K (2002) Synergistic interaction between two cockroach sodium channel mutation and a tobacco budworm sodium channel mutation in reducing channel sensitivity to a pyrethroid insecicide. Insect Biochem Mol Biol 32:397–404CrossRefGoogle Scholar
  60. Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 102:8420–8425CrossRefGoogle Scholar
  61. Ludmerer SW, Warren VA, Williams BS, Zheng Y, Hunt DC, Ayer MB, Wallace MA, Chaudhary AG, Egan MA., Meinke PT, Dean DC, Garcia ML, Cully DF, Smith McH M (2002) Ivermectin and nodulisporic acid receptors in Drosophila melanogaster contain both γ-aminobutyric acid-gated Rdl and glutamate-gated GluClα chloride channel subunits. Biochemistry 41:6548–6560CrossRefPubMedGoogle Scholar
  62. Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachey PA (2003) Identification of hedgehog pathway signalling components by RNAi in Drosophila cultured cells. Science 299:2039–2045Google Scholar
  63. Martin RL, Pittendrigh B, Liu J, Reenan R, ffrench-Constant R, Hanck DA (2000) Point mutations in domain III of a Drosophila neuronal Na channel confer resistance to allethrin. Insect Biochem Mol Biol 30:1051–1059CrossRefGoogle Scholar
  64. Massoulié L, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91CrossRefGoogle Scholar
  65. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. TIPS 22:573–580PubMedGoogle Scholar
  66. Matsumura F, Ghiasuddin SM (1983) Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanisms. J Environ Sci Health B 18:1–14PubMedGoogle Scholar
  67. Miyazaki N, Ohyama K, Dunlap DY, Matsumara F (1996) Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr resistant German cockroaches (Blattela germanica) and the house fly (Musca domestica). Mol Gen Genet 252:61–68CrossRefGoogle Scholar
  68. Mongan NP, Jones AK, Smith GR, Sansom MSP, Sattelle DB (2002) Novel α7-like nicotinic acetylcholine receptor a subunits in the nematode Caenorhabditis elegans. Prot Sci 11:1162–1171CrossRefGoogle Scholar
  69. Morgan K, Stevens EB, Shah B, Cox PJ, Dixon AK, Lee K, Pinnock RD et al (2000) β3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 97:2308–2313CrossRefGoogle Scholar
  70. Nagata K, Iwanaga Y, Shono T, Narahashi T (1997) Modulation of the neuronal nicotinic acetylcholine receptor channel by imidacloprid and cartap. Pest Biochem Physiol 59:119–128CrossRefGoogle Scholar
  71. Narahashi T (1992) Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci 13:236–241CrossRefGoogle Scholar
  72. Narahashi T (1996) Neuronal ion channels as the targets of insecticides. Pharmacol Toxicol 79:1–14PubMedGoogle Scholar
  73. Narahashi T (2000) Neuroreceptors and ion channels as the basis for drug action: past present and future. J Pharm Exp Ther 294:1–26Google Scholar
  74. Ozoe Y, Mochida K, Eto M (1982) Binding of toxic bicyclic phosphates to rat brain synaptic membrane fractions. Agric Biol Chem 46:2521–2526Google Scholar
  75. Park Y, Taylor MF, Feyereisen R (1997) A valine 421 to methionine mutation in IS6 of the hscp voltage-gated sodium channel associated with pyrethroid resistance in Heliothis virescens F. Biochem Biophys Res Commun 239(3):688–691CrossRefGoogle Scholar
  76. Pittendrigh B, Reenan R, ffrench-Constant RH, Ganetzky B (1997) Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Mol Gen Genet 256:602–610CrossRefGoogle Scholar
  77. Ratra GS, Casida JE (2001) GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicol Lett 122:215–222CrossRefGoogle Scholar
  78. Rauh JJ, Lummis SCR, Sattelle DB (1990) Pharmacological and biochemical properties of insect GABA receptors. Trends Pharmacol Sci 11:325–329CrossRefPubMedGoogle Scholar
  79. Raymond-Delpech V, Ihara M, Coddou C, Matsuda K, Sattelle DB (2003) Actions of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Invert Neurosci 5:29–35CrossRefGoogle Scholar
  80. Raymond-Delpech V, Towers PR, Sattelle DB (2004) Gene silencing of selective calcium signalling molecules in a Drosophila cell line using RNA interference. Cell Calcium 35:131–139CrossRefGoogle Scholar
  81. Raymond V, Sattelle DB (2002) Novel animal-health drug targets from ligand-gated chloride channels. Nature Drug Discover 1:427–436CrossRefGoogle Scholar
  82. Rohrer SP, Birzin ET, Costa SD, Arena JP, Hayes EC, Schaeffer JM (1995) Identification of neuron-specific ivermectin binding sites in Drosophila melanogaster and Schistocerca americana. Insect Biochem Mol Biol 25:11–17CrossRefGoogle Scholar
  83. Sakai M, Sato Y (1971) Metabolic conversion of the nereistoxin-related compounds into nereistoxin as a factor of their insecticidal action. In: Abstracts in 2nd International Congress Pest Chemistry, Tel AvivGoogle Scholar
  84. Salgado VL (1992) Slow voltage-dependant block of sodium channels in crayfish nerve by dihydropyrazole insecticides. Mol Pharmacol 41:120–126PubMedGoogle Scholar
  85. Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102CrossRefGoogle Scholar
  86. Salgado VL, Saar R (2004) Desensitizing and non-desensitizing subtypes of α-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 50:867–879CrossRefGoogle Scholar
  87. Salgado VL, Sheets JJ, Watson GB, Schmidt AL (1998) Studies on the mode of action of spinosad: the internal effective concentrations and the concentration dependence of neural excitation. Pestic Biochem Physiol 60:103–110CrossRefGoogle Scholar
  88. Sattelle DB (1986) Insect acetylcholine receptors—biochemical and physiological approaches. In: Neuropharmacology and pesticide action, vol 144. Ellis Horwood Limited VCH, Chichester and Weinheim, pp 445–497Google Scholar
  89. Sattelle DB (1990) γ-Aminobutyric acid receptors of insects. Adv Insect Physiol 22:1–113Google Scholar
  90. Sattelle DB, Yamamoto D (1988) Molecular targets of pyrethroid insecticides. Adv Insect Physiol 20:147–213Google Scholar
  91. Sattelle DB, Harrow ID, David JA, Pelhate M, Callec JJ, Gepner JI, Hall LM (1985) Nereistoxin: actions on an acetylcholine receptor/ion channel complex in the central nervous system of an insect Periplaneta americana (L.). J Exp Biol 118:37–52Google Scholar
  92. Sattelle DB, Culetto E, Grauso M, Raymond V, Franks C, Towers P (2002) Functional genomics of ionotropic acetylcholine receptors in Caenorhabditis elegans and Drosophila melanogaster. In: Ion channels: from atomic physiology to functional genomics (Novartis symposium 245). Wiley, UK, pp 240–260Google Scholar
  93. Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC (2005) Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays 27:366–376CrossRefGoogle Scholar
  94. Schaeffer JM, Haines HW (1989) Avermectin binding in Caenorhabditis elegans. A two-state model for the avermectin binding site. Biochem Pharmacol 38:2329–2338CrossRefGoogle Scholar
  95. Semenov EP, Pak WL (1999) Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J Neurochem 72:66–72CrossRefGoogle Scholar
  96. Shimomura M, Okuda H, Matsuda K, Komai K, Akamatsu M, Sattelle DB (2002) Effects of mutations of a glutamine residue in loop D of the α 7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. Br J Pharmacol 137:162–169CrossRefGoogle Scholar
  97. Sigel E, Baur R (1987) Effect of avermectin B1a on chick neuronal γ-aminobutyrate receptor channels expressed in Xenopus oocytes. Mol Pharmacol 32:749–752PubMedGoogle Scholar
  98. Smith TJ, Ingles PJ, Soderlund DM (1998) Actions of the pyrethroid insecticides cismethrin and cypermethrin on house fly Vssc1 sodium channels expressed in Xenopus oocytes. Arch Insect Biochem Physiol 38(3):126–136CrossRefGoogle Scholar
  99. Smith McHM, Warren VA, Thomas BS, Broch RM, Ertel EA, Rohrer S, Schaeffer J et al (2000) Nodulisporic acid opens insect glutamate-gated chloride channels: identification of a new high affinity modulator. Biochemistry 39:5543–5554CrossRefGoogle Scholar
  100. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59CrossRefGoogle Scholar
  101. Sparks TC, Kirst HA, Mynderse JS, Thompson GD, Turner JR, Jantz O, Hertlein MB et al (1996) Chemistry and Biology of the spinosyns: components of spinosad (Tracer), the first entry into Dow Elanco’s naturalyte class of insect control products. Proc Beltwide Cotton Conf 2:692–696Google Scholar
  102. Tan J, Liu Z, Nomura Y, Goldin AL, Dong K (2002a) Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J Neurosci 22:5300–5309Google Scholar
  103. Tan J, Liu Z, Tsai TD, Valles SM, Goldin AL, Dong K (2002b) Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin. Insect Biochem Mol Biol 32:445–454CrossRefGoogle Scholar
  104. Tan J, Liu Z, Wang R, Huang ZY, Chen AC, Gurevitz M, Dong K (2005) Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding. Mol Pharmacol 67:513–522CrossRefGoogle Scholar
  105. Towers PR, Sattelle DB (2002) A Drosophila melanogaster cell line (S2) facilitates post-genome functional analysis of receptors and ion channels. Bioessays 24:1066–1073CrossRefGoogle Scholar
  106. Unwin N (1993) Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol 299:1101–1124CrossRefGoogle Scholar
  107. Warmke JW, Reenan RA, Wang P, Qian S, Arena JP, Wang J, Wunderler D, Liu K, Kaczorowski GI, Van der Ploeg LH, Ganetzky B, Cohen CJ (1997) Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. J Gen Physiol 110:119–133CrossRefGoogle Scholar
  108. Watson GB (2001) Actions of insecticidal spinosyns on γ-aminobutyric acid responses from small-diameter cockroach neurons. Pest Biochem Physiol 71:20–28CrossRefGoogle Scholar
  109. Williamson MS, Denholm I, Bell CA, Devonshire AL (1993) Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Mol Gen Genet 240:17–22CrossRefGoogle Scholar
  110. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL (1996) Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet 252:51–60CrossRefGoogle Scholar
  111. Wing KD, Schnee ME, Sacher M, Connair M (1998) A novel oxadiazine insecticide is bioactived in lepidopteran larvae. Arch Insect Biochem Physiol 37:91–103CrossRefGoogle Scholar
  112. Wolff MA, Wingate VP (1998) Characterization and comparative pharmacological studies of a functional gamma-aminobutyric acid (GABA) receptor cloned from the tobacco budworm, Heliothis virescens (Noctuidae: Lepidoptera). Invert Neurosci 3:305–315PubMedGoogle Scholar
  113. Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4:207.1–207.7CrossRefGoogle Scholar
  114. Zhao X, Nagata K, Marszalec W, Yeh JZ, Narahashi T (1999) Effects of the oxadiazine insecticide Indoxacarb (DPX-MP062) on neuronal nicotinic acetylcholine receptors in mammalian neurons. Neurotoxicology 20:561–570PubMedGoogle Scholar
  115. Zhao X, Yeh JZ, Salgado VL, Narahashi T (2004) Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. J Pharm Exp Ther 310:192–201CrossRefGoogle Scholar
  116. Zlotkin E (1999) The insect-voltage gated sodium channel as target of insecticides. Annu Rev Entomol 44:429–455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Valérie Raymond-Delpech
    • 1
    • 4
  • Kazuhiko Matsuda
    • 2
  • Benedict M. Sattelle
    • 1
  • James J. Rauh
    • 3
  • David B. Sattelle
    • 1
  1. 1.MRC Functional Genetics Unit, Department of Human Anatomy and GeneticsUniversity of OxfordOxfordUK
  2. 2.Department of Applied Biological Chemistry, School of AgricultureKinki UniversityNakamachi, Nara 631Japan
  3. 3.Stine Haskell LaboratoryDupont Agricultural ProductsNewarkUSA
  4. 4.Centre de Recherches sur la Cognition Animale, CNRS UMR 5169Université Paul SabatierToulouse, CedexFrance

Personalised recommendations