Invertebrate Neuroscience

, Volume 5, Issue 1, pp 29–35 | Cite as

Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes

  • Valérie Raymond Delpech
  • Makoto Ihara
  • Claudio Coddou
  • Kazuhiko Matsuda
  • David B. Sattelle
Original Articles


Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken α7, chicken α4β2 and the Drosophila melanogaster/chicken hybrid receptors SAD/β2 and ALS/β2. No agonist action of NTX (0.1–100 μM) was observed on chicken α7, chicken α4β2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (α7) or heteromeric (α4β2) nicotinic AChRs. Block by NTX of the chicken α7, chicken α4β2 and the SAD/β2 and ALS/β2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.


Nicotinic acetylcholine receptor Nereistoxin Chicken α7 subunit Chicken α4β2 receptor Drosophila melanogaster Nicotinic receptor subunits (SAD, ALS) Xenopus laevis oocytes 


  1. Barnes WM (1994) PCR amplification of up to 35-kb DNA with high-fidelity and high-yield from λ-bacteriophage templates. Proc Natl Acad Sci U S A 91:2216–2220PubMedGoogle Scholar
  2. Bertrand D, Ballivet M, Gomez M, Bertrand S, Phannavong B, Gundelfinger ED (1994) Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila α subunits. Eur J Neurosci 6:869–875PubMedGoogle Scholar
  3. Bettini S, D’ajello V, Maroli M (1973) Cartap activity on the cockroach nervous and neuromuscular transmission. Pestic Biochem Physiol 3:199–205Google Scholar
  4. Blake AD, Anthony NM, Chen HH, Harrison JB, Nathanson NM, Sattelle DB (1993) Drosophila nervous system muscarinic acetylcholine receptor: transient functional expression and localization by immunocytochemistry. Mol Pharmacol 44:716–724PubMedGoogle Scholar
  5. Buckingham SD, Hosie AM, Roush RL, Sattelle DB (1994) Actions of agonists and convulsant antagonists on a Drosophila melanogaster GABA receptor (Rdl) homo-oligomer expressed in Xenopus oocytes. Neurosci Lett 181:137–140CrossRefPubMedGoogle Scholar
  6. David JA, Sattelle DB (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana). J Exp Biol 108:119–136Google Scholar
  7. Eldefrawi AT, Bakry NM, Eldefrawi ME, Tsai MC, Albuquerque EX (1980) Nereistoxin interaction with the acetylcholine receptor-ionic channel complex. Mol Pharmacol 17:172–179PubMedGoogle Scholar
  8. Fisher DH, Xie Y, Loring R (1993) Analysis of nereistoxin using HPLC and electrochemical detection. Anal Lett 26:1051–1063Google Scholar
  9. Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519–1533PubMedGoogle Scholar
  10. Gundelfinger ED (1992) How complex is the nicotinic receptor system of insects? Trends Neurosci 15:206–211CrossRefPubMedGoogle Scholar
  11. Gundelfinger ED, Schulz R (2000) Insect nicotinic acetylcholine receptors: genes, structure, physiological and pharmacological properties. In: Clementi F, Fornasari D, Gotti C (eds) Neuronal nicotinic receptors. Handbook of experimental pharmacology, vol 144. Springer, Berlin Heidelberg New York, pp 497–521Google Scholar
  12. Lansdell SJ, Schmitt B, Betz H, Sattelle DB, Millar NS (1997) Temperature-sensitive expression of Drosophila neuronal nicotinic acetylcholine receptors. J Neurochem 68:1812–1819PubMedGoogle Scholar
  13. Littleton JT, Ganetzky B (2000) Ions channels and synaptic organization: analysis of the Drosophila genome. Neuron 26:35–43PubMedGoogle Scholar
  14. Lupu-Meiri M, Shapira H, Oron Y (1990) Extracellular calcium participates in responses to acetylcholine in Xenopus oocytes. FEBS Lett 262:165–169CrossRefPubMedGoogle Scholar
  15. Matsuda K, Buckingham SD, Freeman JC, Squire MD, Baylis HA, Sattelle DB (1998) Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Br J Pharmacol 123:518–524PubMedGoogle Scholar
  16. Mitsudera H, Konishi K (1991) Studies on nereistoxin and its related compounds. 2. Synthesis and insecticidal activity of 5-dimethylamino–1,3-ithanes. J Pestic Sci 16:397–404Google Scholar
  17. Nagata K, Iwanaga Y, Shono T, Narahashi T (1997) Modulation of the neuronal nicotinic acetylcholine receptor channel by imidacloprid and Cartap. Pestic Biochem Physiol 59:119–128CrossRefGoogle Scholar
  18. Narahashi T (1973) Mode of action of nereistoxin on excitable tissues. In: Martin DF, Padilla GM (eds) Marine pharmacognosy. Actions of marine biotoxins at the cellular level. Academic, New York, pp 107–126Google Scholar
  19. Sakai M (1964) Studies on the insecticidal action of nereistoxin, 4-N,N-dimethylamino–1,2-dithiolane. I. Insecticidal properties. Jpn J Appl Entomol Zool 8:324–333Google Scholar
  20. Sakai M (1966) Studies on the insecticidal action of nereistoxin, 4-N,N-dimethylamino–1,2-dithiolane. II. Symptomatology. Bochu-Kagaku 31:53–61Google Scholar
  21. Sakai M (1967) Studies on the insecticidal action of nereistoxin, 4-N,N-dimethylamino–1,2-dithiolane. V. Blocking action of the cockroach ganglion. Bochu-Kagaku 32:21–33Google Scholar
  22. Sakai M (1970) Nereistoxin and its derivatives: their ganglionic blocking and insecticidal activity. In: O’Brien RD, Yamamoto I (eds) Biochemical toxicology of insecticides. Academic, New York, pp 33–40Google Scholar
  23. Sakai M, Sato Y (1971) Metabolic conversion of the nereistoxin-related compounds into nereistoxin as a factor in their insecticidal action. In: Abstr 2nd Int Congr Pestic Chem Tel AvivGoogle Scholar
  24. Sattelle DB (1980) Acetylcholine receptors of insects. Adv Insect Physiol 15:215–315Google Scholar
  25. Sattelle DB, Breer H (1990) Cholinergic nerve terminals in the central nervous system of insects. J Neuroendocrinol 2:241–256Google Scholar
  26. Sattelle DB, Harrow ID, David JA, Pelhate M, Callec JJ, Gepner JI, Hall LM (1985) Nereistoxin: actions on a CNS acetylcholine receptor/ion channel in the cockroach Periplaneta americana. J Exp Biol 118:37–52Google Scholar
  27. Sattelle DB, Culetto E, Grauso M, Raymond V, Franks C, Towers P (2002) Functional genomics of ionotropic acetylcholine receptors in Caenorhabditis elegans and Drosophila melanogaster. Novartis Fundation Symposium 245:240–260Google Scholar
  28. Sawruk E, Schloss P, Betz H, Schmitt B (1990) Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated α-subunit. EMBO J 9:2671–2677PubMedGoogle Scholar
  29. Schulz R, Sawruk E, Mulhardt C, Bertrand S, Baumann A, Phannavong B, Betz H, Bertrand D, Gundelfinger ED, Schmitt B (1998) Dα3, a new functional α subunit of nicotinic acetylcholine receptors from Drosophila. J Neurochem 71:853–862PubMedGoogle Scholar
  30. Sherby SM, Eldefrawi AT, David JA, Sattelle DB, Eldefrawi ME (1986) Interactions of charatoxin and nereistoxin with the nicotinic acetylcholine receptors of insect CNS and Torpedo electric organ. Arch Insect Biochem Physiol 3:431–445Google Scholar
  31. Swick AG, Janicot M, Chenevalkasterlic T, McLenithan JC, Lane MD (1992) Promoter cDNA-directed heterologous protein expression in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 89:1812–1816PubMedGoogle Scholar
  32. Usherwood PN, Machili P, Leaf G (1968). l-glutamate at insect excitatory nerve–muscle synapses. Nature 219:1169–1172PubMedGoogle Scholar
  33. Xie Y, Lane WV, Loring RH (1993) Nereistoxin: a naturally occurring toxin with redox effects on neuronal nicotinic acetylcholine receptors in chick retina. J Pharmacol Exp Ther 264:689–694PubMedGoogle Scholar
  34. Xie Y, McHugh T, McKay J, Jones GS Jr, Loring RH (1996) Evidence that a nereistoxin metabolite, and not nereistoxin itself reduces neuronal nicotinic receptors: studies in the whole chick ciliary ganglion, on isolated neurons and immunoprecipitated receptors. J Pharmacol Exp Ther 276:169–177PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Valérie Raymond Delpech
    • 1
    • 4
  • Makoto Ihara
    • 2
  • Claudio Coddou
    • 1
    • 3
  • Kazuhiko Matsuda
    • 2
  • David B. Sattelle
    • 1
  1. 1.MRC Functional Genetics Unit, Department of Human Anatomy and GeneticsUniversity of OxfordOxfordUK
  2. 2.Department of Agricultural Chemistry, Faculty of AgricultureKinki UniversityNaraJapan
  3. 3.Centro de Regulacion Celular y Patalogia, Instituto Milenio MIFAB, Unidad de Regulacion Neurohumoral, Departamento de Ciencias FisiologicasP. Universidad Catolica de ChileCasillaChile
  4. 4.Centre de Recherches sur la Cognition Animale, UMR 5169Université Paul SabatierToulouse CedexFrance

Personalised recommendations