Clinical and Experimental Nephrology

, Volume 23, Issue 5, pp 589–596 | Cite as

Changes in serum and intracardiac fibroblast growth factor 23 during the progression of left ventricular hypertrophy in hypertensive model rats

  • Hideki FujiiEmail author
  • Kentaro Watanabe
  • Keiji Kono
  • Shunsuke Goto
  • Shuhei Watanabe
  • Shinichi Nishi
Original article



Recent clinical studies have demonstrated that serum fibroblast growth factor 23 (FGF23) levels have a significant association with left ventricular hypertrophy (LVH). Although LVH is commonly seen in hypertensive patients, the association between FGF23, hypertension, and LVH remains unclear. We aimed to examine the changes in serum and intracardiac FGF23 during the progression of hypertension using spontaneously hypertensive rats (SHR).


Male SHR comprised the experimental group (HT group) and Wistar Kyoto rats served as controls. At 10 weeks, urinary and blood biochemical analyses and blood pressure measurements were performed for both the groups. At 18 weeks, the rats were sacrificed: urinary and blood biochemical analyses and real-time PCR were performed.


At 18 weeks, the relative heart weight and serum N-terminal pro-brain natriuretic peptide and aldosterone levels were significantly greater in the HT group. Serum calcium and phosphate levels were significantly lower, while serum FGF23 levels were significantly higher in the HT group compared to the control group. Further analyses showed that the mRNA expression of FGF23 in the heart was significantly increased in the HT group compared to the control group. Both serum FGF23 levels and intracardiac mRNA expression of FGF23 showed significant correlation with the relative heart weight.


During LVH progression, serum and intracardiac FGF23 increased in hypertension. Although it is unclear whether the change in FGF23 is the cause or result of LVH, the interaction between FGF23 and aldosterone may be associated with the development of LVH in hypertension.


Left ventricular hypertrophy Hypertension FGF23 Aldosterone 


Compliance with ethical standards

Conflict of interest

H.F. received lecture fees from Chugai Pharmaceutical Co., Ltd., Bayer Yakuhin Co., Ltd., KISSEI Pharmaceutical Co., Ltd., and ONO Pharmaceutical Co., Ltd., and scholarship/donation from Chugai Pharmaceutical Co., Ltd., Bayer Yakuhin Co., Ltd. and ONO Pharmaceutical Co., Ltd., MSD, Asteras, TEIJIN and KYOWA HAKKO KIRIN Pharmaceutical Co., Ltd. S.N. received lecture fees from Chugai Pharmaceutical Co., Ltd., Bayer Yakuhin Co., Ltd., KYOWA HAKKO KIRIN Pharmaceutical Co., and Asteras Pharmaceutical Co., Ltd., and scholarship/donation from Chugai Pharmaceutical Co., Ltd., Bayer Yakuhin Co., Ltd. and ONO Pharmaceutical Co., Ltd., MSD, Asteras, TEIJIN and KYOWA HAKKO KIRIN Pharmaceutical Co., Ltd. All the other authors declared no conflict of interest.

Human and animal rights

All procedures performed in studies involving animals were in accordance with the ethical standards of the Animal Care and Use Committee of Kobe University (Permit number P160708).


  1. 1.
    U.S. Renal Data System, USRDS 2016 Annual Data Report. Atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.Google Scholar
  2. 2.
    Hanafusa N, Nakai S, Iseki K, Tsubakihara Y. Japanese society for dialysis therapy renal data registry-a window through which we can view the details of Japanese dialysis population. Kidney Int Suppl. 2015;5:15–22.CrossRefGoogle Scholar
  3. 3.
    Foley RN, Parfrey PS, Harnett JD, Kent GM, Martin CJ, Murray DC, Barre PE. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47:186–92.CrossRefGoogle Scholar
  4. 4.
    London GM, Pannier B, Guerin AP, Blacher J, Marchais SJ, Darne B, Metivier F, Adda H, Safar ME. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol. 2001;12:2759–67.Google Scholar
  5. 5.
    Kitamura K, Fujii H, Kono K, Nakai K, Goto S, Nishii T, Kono A, Nishi S. Relationship between cardiac calcification and left ventricular hypertrophy in patients with chronic kidney disease at hemodialysis initiation. Heart Vessels. 2017;32:1109–16.CrossRefGoogle Scholar
  6. 6.
    Di Lullo L, Gorini A, Russo D, Santoboni A, Ronco C. Left ventricular hypertrophy in chronic kidney disease patients: from pathophysiology to treatment. Cardiorenal Med. 2015;5:254–66.CrossRefGoogle Scholar
  7. 7.
    Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82:737–47.CrossRefGoogle Scholar
  8. 8.
    Isakova T, Xie H, Yang W, et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.CrossRefGoogle Scholar
  9. 9.
    Gutierrez OM. Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359:584–92.CrossRefGoogle Scholar
  10. 10.
    Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutiérrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M. Chronic Renal Insufficiency Cohort (CRIC) Study Group. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.CrossRefGoogle Scholar
  11. 11.
    Fujii H, Yonekura Y, Yamashita Y, Kono K, Nakai K, Goto S, Sugano M, Goto S, Fujieda A, Ito Y, Nishi S. Anti-oxidative effect of AST-120 on kidney injury after myocardial infarction. Br J Pharmacol. 2016;173:1302–13.CrossRefGoogle Scholar
  12. 12.
    Fujii H, Hamada Y, Fukagawa M. Bone formation in spontaneously diabetic Torii-newly established model of non-obese type 2 diabetes rats. Bone. 2008;42:372–9.CrossRefGoogle Scholar
  13. 13.
    Gutiérrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, deFilippi C, Wolf M. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119:2545–52.CrossRefGoogle Scholar
  14. 14.
    Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro -OM, Kusek JW, Keane MG, Wolf M. FGF23 induces left ventricular hypertrophy. J Clin Investig. 2011;121:4393–408.CrossRefGoogle Scholar
  15. 15.
    Shibata K, Fujita S, Morita H, Okamoto Y, Sohmiya K, Hoshiga M, Ishizaka N. Association between circulating fibroblast growth factor 23, α-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS ONE. 2013;8:e73184.CrossRefGoogle Scholar
  16. 16.
    Grabner A, Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, Martin A, Fornoni A, Di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstädt H, Stypmann J, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22:1020–32.CrossRefGoogle Scholar
  17. 17.
    Fyfe-Johnson AL, Alonso A, Selvin E, Bower JK, Pankow JS, Agarwal SK, Lutsey PL. Serum fibroblast growth factor-23 and incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. J Hypertens. 2016;34:1266–72.CrossRefGoogle Scholar
  18. 18.
    Neves KR, Graciolli FG, dos Reis LM, Pasqualucci CA, Moysés RM, Jorgetti V. Adverse effects of hyperphosphatemia on myocardial hypertrophy, renal function, and bone in rats with renal failure. Kidney Int. 2004;66:2237–44.CrossRefGoogle Scholar
  19. 19.
    Yamamoto KT, Robinson-Cohen C, de Oliveira MC, Kostina A, Nettleton JA, Ix JH, Nguyen H, Eng J, Lima JA, Siscovick DS, Weiss NS, Kestenbaum B. Dietary phosphorus is associated with greater left ventricular mass. Kidney Int. 2013;83:707–14.CrossRefGoogle Scholar
  20. 20.
    Chen S, Law CS, Grigsby CL, Olsen K, Hong TT, Zhang Y, Yeghiazarians Y, Gardner DG. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation. 2011;124:1838–47.CrossRefGoogle Scholar
  21. 21.
    Lee JH, O’Keefe JH, Bell D, Hensrud DD, Holick MF. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardiol. 2008;52:1949–56.CrossRefGoogle Scholar
  22. 22.
    Cha H, Jeong HJ, Jang SP, Kim JY, Yang DK, Oh JG, Park WJ. Parathyroid hormone accelerates decompensation following left ventricular hypertrophy. Exp Mol Med. 2010;42:61–8.CrossRefGoogle Scholar
  23. 23.
    Fujii H, Kim JI, Abe T, Umezu M, Fukagawa M. Relationship between parathyroid hormone and cardiac abnormalities in chronic dialysis patients. Intern Med. 2007;46:1507–12.CrossRefGoogle Scholar
  24. 24.
    Voelkl J, Alesutan I, Leibrock CB, Quintanilla-Martinez L, Kuhn V, Feger M, Mia S, Ahmed MS, Rosenblatt KP, Kuro -OM, Lang F. Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice. J Clin Investig. 2013;123:812–22.Google Scholar
  25. 25.
    Kuster GM, Kotlyar E, Rude MK, Siwik DA, Liao R, Colucci WS, Sam F. Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation. 2005;111:420–7.CrossRefGoogle Scholar
  26. 26.
    Ito Y, Mizuno M, Suzuki Y, Tamai H, Hiramatsu T, Ohashi H, Ito I, Kasuga H, Horie M, Maruyama S, Yuzawa Y, Matsubara T, Matsuo S, Nagoya Spiro Study Group. Long-term effects of spironolactone in peritoneal dialysis patients. J Am Soc Nephrol. 2014;25:1094–102.CrossRefGoogle Scholar
  27. 27.
    Ori Y, Chagnac A, Korzets A, Zingerman B, Herman-Edelstein M, Bergman M, Gafter U, Salman H. Regression of left ventricular hypertrophy in patients with primary aldosteronism/low-renin hypertension on low-dose spironolactone. Nephrol Dial Transplant. 2013;28:1787–93.CrossRefGoogle Scholar
  28. 28.
    Okoshi MP, Cezar MDM, Iyomasa RM, Silva MB, Costa LCO, Martinez PF, Campos DHS, Damatto RL, Minicucci MF, Cicogna AC, Okoshi K. Effects of early aldosterone antagonism on cardiac remodeling in rats with aortic stenosis-induced pressure overload. Int J Cardiol. 2016;222:569–75.CrossRefGoogle Scholar
  29. 29.
    Leifheit-Nestler M, Kirchhoff F, Nespor J, Richter B, Soetje B, Klintschar M, Heineke J, Haffner D. Fibroblast growth factor 23 is induced by an activated renin–angiotensin–aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrol Dial Transplant. 2018 (Epub ahead of print).Google Scholar
  30. 30.
    Zhang B, Umbach AT, Chen H, Yan J, Fakhri H, Fajol A, Salker MS, Spichtig D, Daryadel A, Wagner CA, Föller M, Lang F. Up-regulation of FGF23 release by aldosterone. Biochem Biophys Res Commun. 2016;470:384–90.CrossRefGoogle Scholar
  31. 31.
    Slavic S, Ford K, Modert M, Becirovic A, Handschuh S, Baierl A, Katica N, Zeitz U, Erben RG, Andrukhova O. Genetic ablation of Fgf23 or klotho does not modulate experimental heart hypertrophy induced by pressure overload. Sci Rep. 2017;7:11298.CrossRefGoogle Scholar
  32. 32.
    Leifhelt-Nestler M, Große Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, Klintschar M, Becker JU, Erbersdobler A, Aufricht C, Seeman T, Fischer DC, Faul C, Haffner D. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transplant. 2016;31:1088–99.CrossRefGoogle Scholar
  33. 33.
    Matsui I, Oka T, Kusunoki Y, et al. Cardiac hypertrophy elevates serum levels of fibroblast growth factor 23. Kidney Int. 2018;94:60–71.CrossRefGoogle Scholar
  34. 34.
    Briones AM, Nguyen Dinh Cat A, Callera GE, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59(5):1069–78.CrossRefGoogle Scholar
  35. 35.
    Mano A, Tatsumi T, Shiraishi J, et al. Aldosterone directly induces myocyte apoptosis through calcineurin-dependent pathways. Circulation. 2004 Jul;20(3):317–23. 110(.CrossRefGoogle Scholar
  36. 36.
    Takeda Y, Yoneda T, Demura M, et al. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105(6):677–9.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2018

Authors and Affiliations

  1. 1.Division of Nephrology and Kidney CenterKobe University Graduate School of MedicineKobeJapan

Personalised recommendations