Clinical and Experimental Nephrology

, Volume 23, Issue 5, pp 689–699 | Cite as

Effects of long-term treatment with low-GDP, pH-neutral solutions on peritoneal membranes in peritoneal dialysis patients

  • Mitsuhiro Tawada
  • Chieko Hamada
  • Yasuhiro Suzuki
  • Fumiko Sakata
  • Ting Sun
  • Hiroshi Kinashi
  • Takayuki Katsuno
  • Yoshifumi Takei
  • Shoichi Maruyama
  • Kazuho Honda
  • Masashi Mizuno
  • Yasuhiko ItoEmail author
Original article



The morphological changes induced by bio-incompatible peritoneal dialysis (PD) solutions are well known. However, the morphological damage induced by long-term low-glucose degradation product (GDP), pH-neutral solutions has not been reported in detail. The aim of this study was to investigate the long-term effects of pH-neutral PD solutions on morphological and functional changes in the peritoneal membrane.


We assessed peritoneal membrane biopsy samples from PD patients treated with acidic (Conventional group) or pH-neutral solutions (pH-neutral group) using pathology and immunopathology techniques.


Analyses of 54 Conventional and 73 pH-neutral group samples showed that the peritoneal membrane was thicker (P < 0.001), the ratio of luminal diameter to vessel diameter (L/V ratio) was significantly smaller (P < 0.001), and advanced glycation end-product (AGE) accumulation was higher in the Conventional than in the pH-neutral group (P < 0.001). Comparison of samples from patients in the Conventional (n = 33) and pH-neutral groups (n = 33) who were treated for 4–10 years also showed significant differences in peritoneal thickness, L/V ratio and AGE score. Furthermore, the L/V ratio in the Conventional group significantly decreased over time (P < 0.01); however, no such change was seen in the pH-neutral group. Peritoneal membrane thickness was not associated with PD duration in both groups. Dialysate-to-plasma ratio of creatinine and L/V ratio negatively correlated with PD treatment duration in the Conventional group, but not in the pH-neutral group.


These findings suggest that pH-neutral solutions prevent the morphological and functional peritoneal changes induced by long-term PD treatment.


Peritoneal morphological changes pH-neutral solution Peritoneal function 



We would like to express our gratitude to Mr. Norihiko Suzuki, Ms. Keiko Higashide, Ms. Naoko Asano, and Ms. Yuriko Sawa (Department of Nephrology, Nagoya University) for their technical assistance.

Compliance with ethical standards

Conflict of interest

Y. Suzuki, F. Sakata, M. Mizuno and Y. Ito belong to the endowed department by Baxter.

Human and animal rights

This study was approved by the Ethics Committee for Human Research of the Faculty of Medicine at Nagoya University (Approval number 299) and Juntendo University (Approval number 26-010).

Informed consent

Informed consents were obtained from all patients.

Supplementary material

10157_2018_1679_MOESM1_ESM.pdf (195 kb)
Supplementary material 1 (PDF 194 KB)


  1. 1.
    Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.CrossRefPubMedGoogle Scholar
  2. 2.
    Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–9.Google Scholar
  3. 3.
    Honda K, Hamada C, Nakayama M, Miyazaki M, Sherif AM, Harada T, et al. Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol. 2008;3:720–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nakamoto H, Hamada C, Shimaoka T, Sekiguchi Y, Io H, Kaneko K, et al. Accumulation of advanced glycation end products and beta 2-microglobulin in fibrotic thickening of the peritoneum in long-term peritoneal dialysis patients. J Artif Organs. 2014;17:60–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Cho Y, Johnson DW, Badve SV, Craig JC, Strippoli GF, Wiggins KJ. The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney Int. 2013;84:969–79.CrossRefPubMedGoogle Scholar
  6. 6.
    Farhat K, Douma CE, Ferrantelli E, Ter Wee PM, Beelen RHJ, van Ittersum FJ. Effects of conversion to a bicarbonate/lactate-buffered, neutral-pH, low-GDP PD regimen in prevalent PD: a 2-year randomized clinical trial. Perit Dial Int. 2017;37:273–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Lee HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, et al. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit Dial Int. 2005;25:248–55.PubMedGoogle Scholar
  8. 8.
    Nakayama M, Miyazaki M, Honda K, Kasai K, Tomo T, Nakamoto H, et al. Encapsulating peritoneal sclerosis in the era of a multi-disciplinary approach based on biocompatible solutions: the NEXT-PD study. Perit Dial Int. 2014;34:766–74.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rippe B, Simonsen O, Heimburger O, Christensson A, Haraldsson B, Stelin G, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001;59:348–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, et al. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int. 2001;59:1529–38.CrossRefPubMedGoogle Scholar
  11. 11.
    Sawai A, Ito Y, Mizuno M, Suzuki Y, Toda S, Ito I, et al. Peritoneal macrophage infiltration is correlated with baseline peritoneal solute transport rate in peritoneal dialysis patients. Nephrol Dial Transplant. 2011;26:2322–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Kinashi H, Ito Y, Mizuno M, Suzuki Y, Terabayashi T, Nagura F, et al. TGF-beta1 promotes lymphangiogenesis during peritoneal fibrosis. J Am Soc Nephrol. 2013;24:1627–42.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tawada M, Ito Y, Hamada C, Honda K, Mizuno M, Suzuki Y, et al. Vascular endothelial cell injury is an important factor in the development of encapsulating peritoneal sclerosis in long-term peritoneal dialysis patients. PLoS One. 2016;11:e0154644.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kariya T, Nishimura H, Mizuno M, Suzuki Y, Matsukawa Y, Sakata F, et al. TGF-beta1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Am J Physiol Renal Physiol. 2018;314:F167-80.CrossRefGoogle Scholar
  15. 15.
    Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol Renal Physiol. 2010;298:F721-33.CrossRefPubMedGoogle Scholar
  16. 16.
    Kawanishi H, Kawaguchi Y, Fukui H, Hara S, Imada A, Kubo H, et al. Encapsulating peritoneal sclerosis in Japan: a prospective, controlled, multicenter study. Am J Kidney Dis. 2004;44:729–37.CrossRefPubMedGoogle Scholar
  17. 17.
    White R, Ram S. Peritoneal dialysis solution attenuates microvascular leukocyte adhesion induced by nitric oxide synthesis inhibition. Adv Perit Dial. 1996;12:53–6.PubMedGoogle Scholar
  18. 18.
    Sherif AM, Nakayama M, Maruyama Y, Yoshida H, Yamamoto H, Yokoyama K, et al. Quantitative assessment of the peritoneal vessel density and vasculopathy in CAPD patients. Nephrol Dial Transplant. 2006;21:1675–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Davies SJ, Phillips L, Naish PF, Russell GI. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol. 2001;12:1046–51.PubMedGoogle Scholar
  20. 20.
    Kim YL. Update on mechanisms of ultrafiltration failure. Perit Dial Int. 2009;29:123-7.Google Scholar
  21. 21.
    Kim CD, Kwon HM, Park SH, Oh EJ, Kim MH, Choi SY, et al. Effects of low glucose degradation products peritoneal dialysis fluid on the peritoneal fibrosis and vascularization in a chronic rat model. Ther Apher Dial. 2007;11:56–64.CrossRefPubMedGoogle Scholar
  22. 22.
    Mortier S, Faict D, Lameire NH, De Vriese AS. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 2005;67:1559–65.CrossRefPubMedGoogle Scholar
  23. 23.
    Kawanishi K, Honda K, Tsukada M, Oda H, Nitta K. Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis. Perit Dial Int. 2013;33:242–51.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hamada C, Honda K, Kawanishi K, Nakamoto H, Ito Y, Sakurada T, et al. Morphological characteristics in peritoneum in patients with neutral peritoneal dialysis solution. J Artif Organs. 2015;18:243–50.CrossRefPubMedGoogle Scholar
  25. 25.
    del Peso G, Jimenez-Heffernan JA, Selgas R, Remon C, Ossorio M, Fernandez-Perpen A, et al. Biocompatible dialysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. a case–control study on human biopsies. Perit Dial Int. 2016;36:129–34.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rigby RJ, Hawley CM. Sclerosing peritonitis: the experience in Australia. Nephrol Dial Transplant. 1998;13:154–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Balasubramaniam G, Brown EA, Davenport A, Cairns H, Cooper B, Fan SL, et al. The Pan-Thames EPS study: treatment and outcomes of encapsulating peritoneal sclerosis. Nephrol Dial Transplant. 2009;24:3209–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Johnson DW, Cho Y, Livingston BE, Hawley CM, McDonald SP, Brown FG, et al. Encapsulating peritoneal sclerosis: incidence, predictors, and outcomes. Kidney Int. 2010;77:904–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Habib AM, Preston E, Davenport A. Risk factors for developing encapsulating peritoneal sclerosis in the icodextrin era of peritoneal dialysis prescription. Nephrol Dial Transplant. 2010;25:1633–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Korte MR, Sampimon DE, Lingsma HF, Fieren MW, Looman CW, Zietse R, et al. Risk factors associated with encapsulating peritoneal sclerosis in Dutch EPS study. Perit Dial Int. 2011;31:269–78.CrossRefPubMedGoogle Scholar
  31. 31.
    Mizuno M, Ito Y, Tanaka A, Suzuki Y, Hiramatsu H, Watanabe M, et al. Peritonitis is still an important factor for withdrawal from peritoneal dialysis therapy in the Tokai area of Japan. Clin Exp Nephrol. 2011;15:727–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Mizuno M, Ito Y, Suzuki Y, Sakata F, Saka Y, Hiramatsu T, et al. Recent analysis of status and outcomes of peritoneal dialysis in the Tokai area of Japan: the second report of the Tokai peritoneal dialysis registry. Clin Exp Nephrol. 2016;20:960–71.CrossRefPubMedGoogle Scholar
  33. 33.
    Ayuzawa N, Ishibashi Y, Takazawa Y, Kume H, Fujita T. Peritoneal morphology after long-term peritoneal dialysis with biocompatible fluid: recent clinical practice in Japan. Perit Dial Int. 2012;32:159–67.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Terabayashi T, Ito Y, Mizuno M, Suzuki Y, Kinashi H, Sakata F, et al. Vascular endothelial growth factor receptor-3 is a novel target to improve net ultrafiltration in methylglyoxal-induced peritoneal injury. Lab Invest. 2015;95:1029–43.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int. 2016;90:515–24.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2018

Authors and Affiliations

  • Mitsuhiro Tawada
    • 1
    • 2
  • Chieko Hamada
    • 3
  • Yasuhiro Suzuki
    • 1
  • Fumiko Sakata
    • 1
  • Ting Sun
    • 1
  • Hiroshi Kinashi
    • 4
  • Takayuki Katsuno
    • 4
  • Yoshifumi Takei
    • 5
  • Shoichi Maruyama
    • 1
  • Kazuho Honda
    • 6
  • Masashi Mizuno
    • 1
  • Yasuhiko Ito
    • 4
    Email author
  1. 1.Department of Nephrology and Renal Replacement TherapyNagoya University Graduate School of MedicineNagoyaJapan
  2. 2.Koujyukai Kasugai HospitalKasugaiJapan
  3. 3.Department of NephrologyJuntendo UniversityTokyoJapan
  4. 4.Department of Nephrology and RheumatologyAichi Medical UniversityNagakuteJapan
  5. 5.Department of Medicinal BiochemistryAichi Gakuin University School of PharmacyNagoyaJapan
  6. 6.Department of AnatomyShowa University School of MedicineTokyoJapan

Personalised recommendations