Clinical and Experimental Nephrology

, Volume 22, Issue 6, pp 1331–1340 | Cite as

Dipstick proteinuria and all-cause mortality among the general population

  • Kunitoshi IsekiEmail author
  • Tsuneo Konta
  • Koichi Asahi
  • Kunihiro Yamagata
  • Shouichi Fujimoto
  • Kazuhiko Tsuruya
  • Ichiei Narita
  • Masato Kasahara
  • Yugo Shibagaki
  • Toshiki Moriyama
  • Masahide Kondo
  • Chiho Iseki
  • Tsuyoshi Watanabe
Original article



Dipstick proteinuria, but not albuminuria, is used for general health screening in Japan. How the results of dipstick proteinuria tests correlate with mortality and, however, is not known.


Subjects were participants of the 2008 Tokutei-Kenshin (Specific Health Check and Guidance program) in six districts in Japan. On the basis of the national database of death certificates from 2008 to 2012, we used a personal identifier in two computer registries to identify participants who might have died. The hazard ratio (95% confidence interval, CI) was calculated by Cox-proportional hazard analysis.


Among a total of 140,761 subjects, we identified 1641 mortalities that occurred by the end of 2012. The crude mortality rates were 1.1% for subjects who were proteinuria (−), 1.5% for those with proteinuria (+/−), 2.0% for those with proteinuria (1+), 3.5% for those with proteinuria (2+), and 3.7% for those with proteinuria (≥ 3+). After adjusting for sex, age, body mass index, estimated glomerular filtration rate, comorbid condition, past history, and lifestyle, the hazard ratio (95% CI) for dipstick proteinuria was 1.262 (1.079–1.467) for those with proteinuria (+/−), 1.437 (1.168–1.748) for those with proteinuria (1+), 2.201 (1.688–2.867) for those with proteinuria (2+), and 2.222 (1.418–3.301) for those with proteinuria (≥ 3+) compared with the reference of proteinuria (−).


Dipstick proteinuria is an independent predictor of death among Japanese community-based screening participants.


Dipstick proteinuria Screening Mortality Cancer Cardiovascular disease 



The funding was provided by Japan Agency for Medical Research and Development, AMED.

Supplementary material

10157_2018_1587_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 KB)


  1. 1.
    Hemmelgarn BR, Manns BJ, Lloyd A, James MT, Klarenbach S, Quinn RR, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303:423–9.CrossRefGoogle Scholar
  2. 2.
    Yu TY, Li HY, Jiang YD, Chang TJ, Wei JN, Chuang LM. Proteinuria predicts 10-year cancer-related mortality in patients with type 2 diabetes. J Diabetes Complic. 2013;27:201–7.CrossRefGoogle Scholar
  3. 3.
    Mok Y, Matsushita K, Sang Y, Ballew SH, Grams M, Shin SY, et al. Association of kidney disease measures with cause-specific mortality: the Korean Heart Study. PLoS One. 2016;11:e0153429.CrossRefGoogle Scholar
  4. 4.
    Wang J, Li J, Wang A, Yang Y, Chen S, Wu S, et al. Dipstick proteinuria and risk of myocardial infarction and all-cause mortality in diabetes or pre-diabetes: a population-based cohort study. Sci Rep. 2017;7:11986.CrossRefGoogle Scholar
  5. 5.
    Wen CP, Cheng TYD, Tsai MK, Chang YC, Chan HT, Tsai SP, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462293 adults in Taiwan. Lancet. 2008;371:2173–82.CrossRefGoogle Scholar
  6. 6.
    Tanihara S, Hayakawa T, Oki I, Nakamura Y, Sakata K, Okayama A, et al. Proteinuria is a prognostic marker for cardiovascular mortality: NIPPON DATA 80, 1980–1999. J Epidemiol. 2005;15:146–53.CrossRefGoogle Scholar
  7. 7.
    Nagata M, Ninomiya T, Kiyohara Y, Murakami Y, Irie F, Sairenchi T, et al. Prediction of cardiovascular disease mortality by proteinuria and reduced kidney function: pooled analysis of 39,000 individuals from 7 cohort studies in Japan. Am J Epidemiol. 2013;178:1–11.CrossRefGoogle Scholar
  8. 8.
    Sato H, Konta T, Ichikawa K, Suzuki N, Kabasawa A, Suzuki K, et al. Comparison of the predictive ability of albuminuria and dipstick proteinuria for mortality in the Japanese population: the Yamagata (Takahata) study. Clin Exp Nephrol. 2016;20:611–7.CrossRefGoogle Scholar
  9. 9.
    Zhang L, Long J, Jiang W, Shi Y, He X, Zhou Z, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375:905–6.CrossRefGoogle Scholar
  10. 10.
    Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: improving Global Outcomes (KDIGO). Kidney Int. 2005;67:2089–100.CrossRefGoogle Scholar
  11. 11.
    Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17–28.CrossRefGoogle Scholar
  12. 12.
    Weng PH, Hung KY, Huang HL, Chen JH, Sung PK, Huang KC. Cancer-specific mortality in chronic kidney disease: longitudinal follow-up of a large cohort. Clin J Am Soc Nephrol. 2011;6:1121–8.CrossRefGoogle Scholar
  13. 13.
    Goodkin DA, Young EW, Kurokawa K, Prütz KG, Levin NW. Mortality among hemodialysis patients in Europe, Japan, and the United States: case-mix effects. Am J Kidney Dis. 2004;44(5 Suppl 2):16–21.CrossRefGoogle Scholar
  14. 14.
    Iseki K, Asahi K, Moriyama T, Yamagata K, Tsuruya K, Yoshida H, et al. Risk factor profiles based on estimated glomerular filtration rate and dipstick proteinuria among participants of the Specific Health Check and Guidance System in Japan 2008. Clin Exp Nephrol. 2012;16:244–9.CrossRefGoogle Scholar
  15. 15.
    Iseki K, Asahi K, Yamagata K, Fujimoto S, Tsuruya K, Narita I, et al. Mortality risk among screened subjects of the Specific Health Check and Guidance Program in Japan 2008–2012. Clin Exp Nephrol. 2017;21(6):978–85.CrossRefGoogle Scholar
  16. 16.
    Iseki K, Konta T, Asahi K, Yamagata K, Fujimoto S, Tsuruya K, et al. Association of dipstick hematuria with all-cause mortality in the general population: results from the Specific Health Check and Guidance Program in Japan. Nephrol Dial Transpl. 2017. Scholar
  17. 17.
    Iseki K, Konta T, Asahi K, et al. Glucosuria is associated with a higher risk of all-cause mortality in both diabetes mellitus and non diabetes mellitus subjects among a general screening cohort. Clin Exp Nephrol. 2018. Scholar
  18. 18.
    Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–81.CrossRefGoogle Scholar
  19. 19.
    Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality: a meta-analysis from the CKD Prognosis Consortium. JAMA. 2014;311:2518–31.CrossRefGoogle Scholar
  20. 20.
    Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 2003;63:1468–74.CrossRefGoogle Scholar
  21. 21.
    Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama Study. Hypertension. 2006;47:149–54.CrossRefGoogle Scholar
  22. 22.
    Matsushita K. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality: a collaborative meta-analysis of general population cohorts. Lancet. 2010;375(9731):2073–81.CrossRefGoogle Scholar
  23. 23.
    Wang G, Staplin N, Emberson J, Baigen C, Turner R, Chalmers J, et al. Chronic kidney disease and the risk of cancer: an individual patient data meta-analysis of 32,057 participants from six prospective studies. BMC Cancer. 2016;16:488.CrossRefGoogle Scholar
  24. 24.
    Hoogeveen EK, Geleijnse JM, Giltay EJ, Soedamah-Muth SS, de Goede J, Oude Griep LM, et al. Kidney function and specific mortality in 60–80 years old post-myocardial infarction patients: a 10-year follow-up study. PLos One. 2017;12(2):e0171868.CrossRefGoogle Scholar
  25. 25.
    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.CrossRefGoogle Scholar
  26. 26.
    Committee to Evaluate Diagnostic Standards for Metabolic Syndrome. Definition and the diagnostic standard for metabolic syndrome. Nihon Naika Gakkai Zasshi 2005;94:794–809 (Japanese).CrossRefGoogle Scholar
  27. 27.
    Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, et al. International clinical harmonization of glycated hemoglobin in Japan: from Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J Diabetes Investig. 2012;3:39–40.CrossRefGoogle Scholar
  28. 28.
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.CrossRefGoogle Scholar
  29. 29.
    Lowrance WT, Ordoñez J, Udaltsova N, Russo P, Go AS. CKD and the risk of incident cancer. J Am Soc Nephrol. 2014;25:2327–34.CrossRefGoogle Scholar
  30. 30.
    Jørgensen L, Heuch I, Jenssen T, Jacobsen BK. Association of albuminuria and cancer incidence. J Am Soc Nephrol. 2008;19:992–8.CrossRefGoogle Scholar
  31. 31.
    Kondo M, Yamagata K, Hoshi SL, Saito C, Asahi K, Moriyama T, et al. Budget impact analysiof chronic kidney disease mass screening test in Japan. Clin Exp Nephrol. 2014;18:885–91.CrossRefGoogle Scholar
  32. 32.
    de Jager DJ, Vervloet MG, Dekker FW. Noncardiovascular mortality in CKD: an epidemiological perspective. Nat Rev Nephrol. 2014;10:208–14.CrossRefGoogle Scholar
  33. 33.
    Konta T, Hao Z, Takasaki S, Abiko H, Ishikawa M, Takahashi T, et al. Clinical utility of trace proteinuria for microalbuminuria screening in the general population. Clin Exp Nephrol. 2007;11:51–5.CrossRefGoogle Scholar
  34. 34.
    Masakane I, Nakai S, Ogata S, Kimata N, Hanafusa N, Hamano T, et al. An overview of regular dialysis treatment in Japan (As of December 2013). Ther Apher Dial. 2015;19:540–74.CrossRefGoogle Scholar
  35. 35.
    Iseki K, Ikemiya Y, Fukiyama K. Risk factors of end-stage renal disease and serum creatinine in a community-based mass screening. Kidney Int. 1997;51:850–4.CrossRefGoogle Scholar
  36. 36.
    Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012;307:1941–51.CrossRefGoogle Scholar
  37. 37.
    Imai E, Yamagata K, Iseki K, Iso H, Horio M, Makino H, et al. Kidney disease screening program in Japan: history, outcome, and perspectives. Clin J Am Soc Nephrol. 2007;2:1360–6.CrossRefGoogle Scholar
  38. 38.
    Nagai K, Sairenchi T, Irie F, Watanabe H, Ota H, Yamagata K. Relationship between estimated glomerular filtration rate and cardiovascular mortality in a Japanese cohort with long-term follow-up. PLoS One. 2016;11:e0156792.CrossRefGoogle Scholar
  39. 39.
    Tanaka K, Watanabe T, Takeuchi A, Ohashi Y, Nitta K, Akizawa T, et al. Cardiovascular events and death in Japanese patients with chronic kidney disease. Kidney Int. 2017;91:227–34.CrossRefGoogle Scholar
  40. 40.
    Konta T, Ichikawa K, Ikeda A, Fujimoto S, Iseki K, Moriyama T, et al. Blood pressure control in a Japanese population with chronic kidney disease: a baseline survey of a nationwide cohort. Am J Hypertens. 2012;25:342–7.CrossRefGoogle Scholar
  41. 41.
    Yano Y, Sato Y, Fujimoto S, Konta T, Iseki K, Moriyama T, et al. Association of high pulse pressure with proteinuria in subjects with diabetes, pre-diabetes or normal glucose tolerance in a large Japanese general population sample. Diabetes Care. 2012;35:1310–5.CrossRefGoogle Scholar
  42. 42.
    Yano Y, Fujimoto S, Kramer H, Sato Y, Konta T, Iseki K, et al. Long-term blood pressure variability, new-onset diabetes, and new-onset chronic kidney disease in the Japanese general population. Hypertension. 2015;66:30–6.CrossRefGoogle Scholar
  43. 43.
    Tsuruya K, Yoshida H, Nagata M, Kitazono T, Iseki K, Iseki C, et al. Impact of the triglycerides to high-density lipoprotein cholesterol ratio on the incidence and progression of chronic kidney disease: a longitudinal study in a large Japanese population. Am J Kidney Dis. 2015;66:972–83.CrossRefGoogle Scholar
  44. 44.
    Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004;65:1870–6.CrossRefGoogle Scholar
  45. 45.
    Kovesdy CP, Coresh J, Ballew SH, Woodward M, Levin A, Naimark DM, et al. Past decline versus current eGFR and subsequent ESRD risk. J Am Soc Nephrol. 2015;27:2447–55.CrossRefGoogle Scholar
  46. 46.
    Carrero JJ, Grams ME, Sang Y, Ärnlöv J, Gasparini A, Matsushita K, et al. Albuminuria changes are associated with subsequent risk of end-stage renal disease and mortality. Kidney Int. 2017;91:244–51.CrossRefGoogle Scholar
  47. 47.
    Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA. 2012;308:2349–60.CrossRefGoogle Scholar
  48. 48.
    Wakasugi M, Kazama JJ, Narita I, Iseki K, Fujimoto S, Moriyama T, et al. Association between overall lifestyle changes and the incidence of proteinuria: a population-based, cohort study. Intern Med. 2017;56(12):1475–84.CrossRefGoogle Scholar
  49. 49.
    Yamagata K, Makino H, Iseki K, Ito S, Kimura K, Kusano E, et al. Effects of behaviour modification on outcome in early- to moderate-stage chronic kidney disease: a cluster-randomized trial. PLoS One. 2016;11:e0151422.CrossRefGoogle Scholar
  50. 50.
    Hallan SI, Øvrehus MA, Romundstad S, Rifkin D, Langhammer A, Stevens PE, et al. Long-term trends with prevalence of chronic kidney disease and the influence of cardiovascular risk factors in Norway. Kidney Int. 2016;90:665–73.CrossRefGoogle Scholar
  51. 51.
    Jha V, Arici M, Collins AJ, Garcia-Garcia G, Hemmelgarn BR, Jafar TH, et al. Understanding kidney care needs and implementation strategies in low- and middle-income countries: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2016;90:1164–74.CrossRefGoogle Scholar
  52. 52.
    Perkovic V, Agarwal R, Fioretto P, Hemmelgarn BR, Levin A, Thomas MC, et al. Management of patients with diabetes and CKD: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2016;90:1175–83.CrossRefGoogle Scholar
  53. 53.
    Boulware LE, Jaar BG, Tarver-Carr ME, Brancati FL, Powe NR. Screening for proteinuria in US adults: a cost-effectiveness analysis. JAMA. 2003;290:3101–14.CrossRefGoogle Scholar
  54. 54.
    Gansevoort RT, de Jong PE, Postma MJ. Cost-effectiveness of screening for proteinuria. JAMA. 2004;291:1442–3.PubMedGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2018

Authors and Affiliations

  • Kunitoshi Iseki
    • 1
    • 2
    • 3
    Email author
  • Tsuneo Konta
    • 2
  • Koichi Asahi
    • 2
  • Kunihiro Yamagata
    • 2
  • Shouichi Fujimoto
    • 2
  • Kazuhiko Tsuruya
    • 2
  • Ichiei Narita
    • 2
  • Masato Kasahara
    • 2
  • Yugo Shibagaki
    • 2
  • Toshiki Moriyama
    • 2
  • Masahide Kondo
    • 2
  • Chiho Iseki
    • 3
  • Tsuyoshi Watanabe
    • 2
  1. 1.Clinical Research Support CenterTomishiro Central HospitalTomigusukuJapan
  2. 2.Steering Committee of Research on Design of the Comprehensive Health Care System for Chronic Kidney Disease (CKD) Based on the Individual Risk Assessment by Specific Health CheckFukushimaJapan
  3. 3.Okinawa Heart and Renal Association (OHRA)OkinawaJapan

Personalised recommendations