Clinical and Experimental Nephrology

, Volume 22, Issue 3, pp 508–516 | Cite as

Interaction of CD80 with Neph1: a potential mechanism of podocyte injury

  • Bhavya Khullar
  • Renu Balyan
  • Neelam Oswal
  • Nidhi Jain
  • Amita Sharma
  • Malik Z. Abdin
  • Arvind Bagga
  • Shinjini Bhatnagar
  • Nitya Wadhwa
  • Uma Chandra Mouli Natchu
  • Anna George
  • Satyajit Rath
  • Vineeta Bal
  • Shailaja Sopory
Original article



The induction of CD80 on podocytes has been shown in animal models of podocyte injury and in certain cases of nephrotic syndrome. In a lipopolysaccharide (LPS)-induced mouse model of albuminuria, we have recently shown a signalling axis of LPS-myeloid cell activation-TNFα production-podocyte CD80 induction-albuminuria. Therefore, in this report, we investigated the cellular and molecular consequences of TNFα addition and CD80 expression on cultured podocytes.


A murine podocyte cell line was used for TNFα treatment and for over-expressing CD80. Expression and localization of various podocyte proteins was analysed by reverse transcriptase-polymerase chain reaction, western blotting and immunofluorescence. HEK293 cells were used to biochemically characterize interactions.


Podocytes treated with LPS in vitro did not cause CD80 upregulation but TNFα treatment was associated with an increase in CD80 levels, actin derangement and poor wound healing. Podocytes stably expressing CD80 showed actin derangement and co-localization with Neph1. CD80 and Neph1 interaction was confirmed by pull down assays of CD80 and Neph1 transfected in HEK293 cells.


Addition of TNFα to podocytes causes CD80 upregulation, actin reorganization and podocyte injury. Overexpressed CD80 and Neph1 interact via their extracellular domain. This interaction implies a mechanism of slit diaphragm disruption and possible use of small molecules that disrupt CD80-Neph1 interaction as a potential for treatment of nephrotic syndrome associated with CD80 upregulation.


CD80 Podocytes TNFα Neph1 Lipopolysaccharide Minimal change disease 


Author contributions

BK, RB, NO, NJ, AS and SS carried out the experiments. SS, SR and VB conceived the notion and provided intellectual content. BK compiled and analyzed the data and helped in manuscript preparation. MZA provided help in data analysis. AB, SB, UCMN and NW helped in data analysis and interpretation. SS, VB, SR and AG interpreted the data and wrote the article.

Compliance with ethical standards

Sources of funding

This work was supported in part by grants from the Department of Biotechnology, Ministry of Science and Technology (DBT) India (Grant numbers BT/PR12849/MED/15/35/2009 and BT/PR5138/BRB/10/1064/2012 to AG, Grant numbers BT/PR-14592/BRB/10/858/2010 and BT/PR/14651/MED/30/566/2010 to SR, Grant number BT/PR14420/Med/29/213/2010 to VB, and Grant number BT/Bio CARe/08/48/2010-2011 to SS); Department of Science and Technology, Ministry of Science and Technology, India (Grant number SR/SO/BB-0035/2013 to AG, grant number SR/SO/HS-0005/2011 to VB) and fellowships from the Council of Scientific and Industrial Research to BK, NO and NJ. National Institute of Immunology and Translational Health Science and Technology Institute are supported by DBT, Government of India.

Conflict of interest

The authors declare no competing or financial interests.

Research involving animals

All mice handling was done at the National Institute of Immunology (NII) and mice were used with the approval of the NII Institutional Animal Ethics Committee (IAEC). The title of the IAEC approved project was “Studies to understand pathogenic mechanisms associated with proteinuria in nephrotic syndrome” with approval number NII-IAEC#349/14.

Informed consent

No human subjects were involved in this study.


  1. 1.
    Brinkkoetter PT, Ising C, Benzing T. The role of the podocyte in albumin filtration. Nat Rev Nephrol. 2013;9(6):328–36. doi: 10.1038/nrneph.2013.78.CrossRefPubMedGoogle Scholar
  2. 2.
    Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253–307. doi: 10.1152/physrev.00020.2002.CrossRefPubMedGoogle Scholar
  3. 3.
    Vivarelli M, Massella L, Ruggiero B, Emma F. Minimal change disease. Clin J Am Soc Nephrol. 2017;12(2):332–45. doi: 10.2215/CJN.05000516.CrossRefPubMedGoogle Scholar
  4. 4.
    Mathieson PW. Immune dysregulation in minimal change nephropathy. Nephrol Dial Transplant. 2003;18(Suppl 6):vi26-9.PubMedGoogle Scholar
  5. 5.
    Zhang H, Wang Z, Dong L, Guo Y, Wu J, Zhai S. New insight into the pathogenesis of minimal change nephrotic syndrome: role of the persistence of respiratory tract virus in immune disorders. Autoimmun Rev. 2016;15(7):632–7. doi: 10.1016/j.autrev.2016.02.007.CrossRefPubMedGoogle Scholar
  6. 6.
    Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol. 2007;18(5):1476–85. doi: 10.1681/ASN.2006070710.CrossRefPubMedGoogle Scholar
  7. 7.
    Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Investig. 2004;113(10):1390–7. doi: 10.1172/JCI20402.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol. 2009;20(2):260–6. doi: 10.1681/ASN.2007080836.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 2010;78(3):296–302. doi: 10.1038/ki.2010.143.CrossRefPubMedGoogle Scholar
  10. 10.
    Fiorina P, Vergani A, Bassi R, Niewczas MA, Altintas MM, Pezzolesi MG, et al. Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol. 2014;25(7):1415–29. doi: 10.1681/ASN.2013050518.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med. 2013;369(25):2416–23. doi: 10.1056/NEJMoa1304572.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Benigni A, Gagliardini E, Remuzzi G. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med. 2014;370(13):1261–3. doi: 10.1056/NEJMc1400502#SA1.CrossRefPubMedGoogle Scholar
  13. 13.
    Salant DJ. Podocyte expression of B7-1/CD80: is it a reliable biomarker for the treatment of proteinuric kidney diseases with abatacept? J Am Soc Nephrol. 2016;27(4):963–5. doi: 10.1681/ASN.2015080947.CrossRefPubMedGoogle Scholar
  14. 14.
    Larsen CP, Messias NC, Walker PD. B7-1 immunostaining in proteinuric kidney disease. Am J Kidney Dis. 2014;64(6):1001–3. doi: 10.1053/j.ajkd.2014.07.023.CrossRefPubMedGoogle Scholar
  15. 15.
    Gagliardini E, Novelli R, Corna D, Zoja C, Ruggiero B, Benigni A, et al. B7-1 is not induced in podocytes of human and experimental diabetic nephropathy. J Am Soc Nephrol. 2016;27(4):999–1005. doi: 10.1681/ASN.2015030266.CrossRefPubMedGoogle Scholar
  16. 16.
    Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-kappaB-dependent pathway. Nephrol Dial Transplant. 2012;27(1):81–9. doi: 10.1093/ndt/gfr271.CrossRefPubMedGoogle Scholar
  17. 17.
    Jain N, Khullar B, Oswal N, Banoth B, Joshi P, Ravindran B, et al. TLR-mediated albuminuria needs TNFalpha-mediated cooperativity between TLRs present in hematopoietic tissues and CD80 present on non-hematopoietic tissues in mice. Dis Model Mech. 2016;9(6):707–17. doi: 10.1242/dmm.023440.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Srivastava T, Sharma M, Yew KH, Sharma R, Duncan RS, Saleem MA, et al. LPS and PAN-induced podocyte injury in an in vitro model of minimal change disease: changes in TLR profile. J Cell Commun Signal. 2013;7(1):49–60. doi: 10.1007/s12079-012-0184-0.CrossRefPubMedGoogle Scholar
  19. 19.
    Gurkan S, Cabinian A, Lopez V, Bhaumik M, Chang JM, Rabson AB, et al. Inhibition of type I interferon signalling prevents TLR ligand-mediated proteinuria. J Pathol. 2013;231(2):248–56.CrossRefPubMedGoogle Scholar
  20. 20.
    Ishimoto T, Shimada M, Gabriela G, Kosugi T, Sato W, Lee PY, et al. Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant. 2013;28(6):1439–46. doi: 10.1093/ndt/gfs543.CrossRefPubMedGoogle Scholar
  21. 21.
    Schiwek D, Endlich N, Holzman L, Holthofer H, Kriz W, Endlich K. Stable expression of nephrin and localization to cell-cell contacts in novel murine podocyte cell lines. Kidney Int. 2004;66(1):91–101. doi: 10.1111/j.1523-1755.2004.00711.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Takano Y, Yamauchi K, Hiramatsu N, Kasai A, Hayakawa K, Yokouchi M, et al. Recovery and maintenance of nephrin expression in cultured podocytes and identification of HGF as a repressor of nephrin. Am J Physiol Ren Physiol. 2007;292(5):F1573–82. doi: 10.1152/ajprenal.00423.2006.CrossRefGoogle Scholar
  23. 23.
    Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17(1):117–22. doi: 10.1038/nm.2261.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang SY, Kamal M, Dahan K, Pawlak A, Ory V, Desvaux D, et al. c-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci Signal. 2010;3(122):ra39. doi: 10.1126/scisignal.2000678.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol. 2008;19(11):2140–9. doi: 10.1681/ASN.2007080940.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hahm E, Wei C, Fernandez I, Li J, Tardi NJ, Tracy M, et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med. 2017;23(1):100–6. doi: 10.1038/nm.4242.CrossRefPubMedGoogle Scholar
  27. 27.
    Baye E, Gallazzini M, Delville M, Legendre C, Terzi F, Canaud G. The costimulatory receptor B7-1 is not induced in injured podocytes. Kidney Int. 2016;90(5):1037–44. doi: 10.1016/j.kint.2016.06.022.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Koukouritaki SB, Vardaki EA, Papakonstanti EA, Lianos E, Stournaras C, Emmanouel DS. TNF-alpha induces actin cytoskeleton reorganization in glomerular epithelial cells involving tyrosine phosphorylation of paxillin and focal adhesion kinase. Mol Med. 1999;5(6):382–92.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Arif E, Rathore YS, Kumari B, Ashish F, Wong HN, Holzman LB, et al. Slit diaphragm protein Neph1 and its signaling: a novel therapeutic target for protection of podocytes against glomerular injury. J Biol Chem. 2014;289(14):9502–18. doi: 10.1074/jbc.M113.505743.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Arif E, Wagner MC, Johnstone DB, Wong HN, George B, Pruthi PA, et al. Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol Cell Biol. 2011;31(10):2134–50. doi: 10.1128/MCB.05051-11.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kim EY, Chiu YH, Dryer SE. Neph1 regulates steady-state surface expression of Slo1 Ca(2+)-activated K(+) channels: different effects in embryonic neurons and podocytes. Am J Physiol Cell Physiol. 2009;297(6):C1379–88. doi: 10.1152/ajpcell.00354.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol. 2013;9(10):587–98. doi: 10.1038/nrneph.2013.169.CrossRefPubMedGoogle Scholar
  33. 33.
    Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, et al. Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J Biol Chem. 1995;270(36):21181–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Donoviel DB, Freed DD, Vogel H, Potter DG, Hawkins E, Barrish JP, et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol. 2001;21(14):4829–36. doi: 10.1128/MCB.21.14.4829-4836.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wagner MC, Rhodes G, Wang E, Pruthi V, Arif E, Saleem MA, et al. Ischemic injury to kidney induces glomerular podocyte effacement and dissociation of slit diaphragm proteins Neph1 and ZO-1. J Biol Chem. 2008;283(51):35579–89. doi: 10.1074/jbc.M805507200.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Doublier S, Ruotsalainen V, Salvidio G, Lupia E, Biancone L, Conaldi PG, et al. Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. Am J Pathol. 2001;158(5):1723–31. doi: 10.1016/S0002-9440(10)64128-4.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2017

Authors and Affiliations

  • Bhavya Khullar
    • 1
  • Renu Balyan
    • 2
  • Neelam Oswal
    • 2
  • Nidhi Jain
    • 2
  • Amita Sharma
    • 1
  • Malik Z. Abdin
    • 3
  • Arvind Bagga
    • 4
  • Shinjini Bhatnagar
    • 1
  • Nitya Wadhwa
    • 1
  • Uma Chandra Mouli Natchu
    • 1
  • Anna George
    • 2
  • Satyajit Rath
    • 1
    • 2
  • Vineeta Bal
    • 1
    • 2
  • Shailaja Sopory
    • 1
  1. 1.Pediatric Biology CenterTranslational Health Science and Technology InstituteFaridabadIndia
  2. 2.National Institute of ImmunologyNew DelhiIndia
  3. 3.Department of Biotechnology, Faculty of ScienceJamia HamdardNew DelhiIndia
  4. 4.Division of Paediatric Nephrology, Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations