Advertisement

Clinical and Experimental Nephrology

, Volume 21, Issue 6, pp 1097–1104 | Cite as

CD147 expression in peritoneal injury

  • Harald Seeger
  • Joerg Latus
  • Daniel Kitterer
  • M. Dominik Alscher
  • Dagmar Biegger
  • Jin Chen
  • Ilka Edenhofer
  • Rudolf P. Wüthrich
  • Stephan Segerer
Original Article

Abstract

Background

Peritoneal injury is an important cause of technical failure of long-term peritoneal dialysis (PD). Encapsulating peritoneal sclerosis (EPS) is a severe complication of long-term PD with potentially life threatening consequences. CD147 is a glycoprotein with diverse functions including modulation of extracellular matrix via induction of matrix metalloproteinases, cell adhesion, and regulation of immune reactions. We hypothesized that CD 147 plays a role in the peritoneal cavity.

Methods

In this retrospective study, we localized CD147 by immunohistochemistry in peritoneal biopsies from uremic patients not on PD (n = 8), on PD without signs of EPS (n = 7), and in biopsies in patients with the diagnosis of EPS (n = 7). Double immunofluorescence was used to co-localize α-smooth-muscle actin (α-SMA) and CD147 in selected biopsies from each group. Expression was scored semi-quantitatively.

Results

In biopsies from uremic controls, CD147 was prominently expressed in mesothelial cells, focally between fat cells and by some perivascular cells. In patients on PD, a similar distribution was present (although mesothelium was rarely conserved), with some focal accentuation. In EPS, layers of fibroblastic cells were positive for CD147. EPS biopsies demonstrated a significantly higher score in a blinded evaluation, compared to uremic patients. Cells expressing CD147 were α-SMA positive myofibroblasts as demonstrated by double immunofluorescence. Mean CD147 scores did not differ between patients with different transporter status.

Conclusions

This is the first study demonstrating CD147 on a major part of fibroblastic cells in EPS. Future studies need to address the role of these cells in this severe complication of long-term PD.

Keywords

Peritoneal dialysis Encapsulating peritoneal sclerosis EPS Emmprin CD147 

Notes

Acknowledgements

St. S. is supported by a Grant by Fundação Pesquisa e Desenvolvimento Humanitario; and the Else-Kröner Fresenius Stiftung. J.L. and D.K. by the Robert-Bosch Foundation.

Compliance with ethical standards

Conflict of interest

Stephan Segerer receives benefits from Peripal and Baxter as a consultant.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee at which the studies were conducted (#322/2009BO1, Ethic committee, Eberhard-Karls University Tuebingen, Germany) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All patients had given their written informed consent concerning a scientific work-up of tissues taken during surgery.

References

  1. 1.
    Kaneko K, Hamada C, Tomino Y. Peritoneal fibrosis intervention. Perit Dial Int. 2007;27(Suppl 2):S82–6.PubMedGoogle Scholar
  2. 2.
    Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int. 2016. doi: 10.1016/j.kint.2016.03.040.Google Scholar
  3. 3.
    Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21(7):1077–85. doi: 10.1681/ASN.2009070694 ([pii]: ASN.2009070694).
  4. 4.
    Krediet RT, Struijk DG. Peritoneal changes in patients on long-term peritoneal dialysis. Nat Rev Nephrol. 2013;9(7):419–29. doi: 10.1038/nrneph.2013.99.CrossRefPubMedGoogle Scholar
  5. 5.
    Kawanishi H. Surgical and medical treatments of encapsulation peritoneal sclerosis. Contrib Nephrol. 2012;177:38–47. doi: 10.1159/000336934.CrossRefPubMedGoogle Scholar
  6. 6.
    Miyazaki M, Yuzawa Y. The role of peritoneal fibrosis in encapsulating peritoneal sclerosis. Perit Dial Int. 2005;25(Suppl 4):S48–56.PubMedGoogle Scholar
  7. 7.
    Latus J, Ulmer C, Fritz P, Rettenmaier B, Biegger D, Lang T, et al. Encapsulating peritoneal sclerosis: a rare, serious but potentially curable complication of peritoneal dialysis-experience of a referral centre in Germany. Nephrol Dial Transpl. 2013;28(4):1021–30. doi: 10.1093/ndt/gfs159.CrossRefGoogle Scholar
  8. 8.
    Pletinck A, Vanholder R, Veys N, Van Biesen W. Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions. Nature Rev Nephrol. 2012;8(9):542–50. doi: 10.1038/nrneph.2012.144.CrossRefGoogle Scholar
  9. 9.
    Hahn JN, Kaushik DK, Yong VW. The role of EMMPRIN in T cell biology and immunological diseases. J Leukoc Biol. 2015;98(1):33–48. doi: 10.1189/jlb.3RU0215-045R.CrossRefPubMedGoogle Scholar
  10. 10.
    Kosugi T, Maeda K, Sato W, Maruyama S, Kadomatsu K. CD147 (EMMPRIN/Basigin) in kidney diseases: from an inflammation and immune system viewpoint. Nephrol Dial Transpl. 2015;30(7):1097–103. doi: 10.1093/ndt/gfu302.CrossRefGoogle Scholar
  11. 11.
    Liao CG, Kong LM, Song F, Xing JL, Wang LX, Sun ZJ, et al. Characterization of basigin isoforms and the inhibitory function of basigin-3 in human hepatocellular carcinoma proliferation and invasion. Mol Cell Biol. 2011;31(13):2591–604. doi: 10.1128/MCB.05160-11.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Braun N, Alscher DM, Fritz P, Edenhofer I, Kimmel M, Gaspert A, et al. Podoplanin-positive cells are a hallmark of encapsulating peritoneal sclerosis. Nephrol Dial Transpl. 2011;26(3):1033–41. doi: 10.1093/ndt/gfq488 ([pii]: gfq488).
  13. 13.
    Braun N, Alscher MD, Fritz P, Latus J, Edenhofer I, Reimold F, et al. The spectrum of podoplanin expression in encapsulating peritoneal sclerosis. PloS One. 2012;7(12):e53382. doi: 10.1371/journal.pone.0053382.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nakamoto H. Encapsulating peritoneal sclerosis–a clinician’s approach to diagnosis and medical treatment. Perit Dial Int. 2005;25(Suppl 4):S30–8.PubMedGoogle Scholar
  15. 15.
    Vlijm A, Stoker J, Bipat S, Spijkerboer AM, Phoa SS, Maes R, et al. Computed tomographic findings characteristic for encapsulating peritoneal sclerosis: a case-control study. Perit Dial Int. 2009;29(5):517–22.PubMedGoogle Scholar
  16. 16.
    Honda K, Nitta K, Horita S, Tsukada M, Itabashi M, Nihei H, et al. Histologic criteria for diagnosing encapsulating peritoneal sclerosis in continuous ambulatory peritoneal dialysis patients. Adv Perit Dial. 2003;19:169–75.PubMedGoogle Scholar
  17. 17.
    Braun N, Sen K, Alscher MD, Fritz P, Kimmel M, Morelle J, et al. Periostin: a matricellular protein involved in peritoneal injury during peritoneal dialysis. Perit Dial Int. 2013. doi:10.3747/pdi.2010.00259.Google Scholar
  18. 18.
    Heller F, Lindenmeyer MT, Cohen CD, Brandt U, Draganovici D, Fischereder M et al. The contribution of B cells to renal interstitial inflammation. Am J Pathol. 2007;170(2):457–68. doi: 10.2353/ajpath.2007.060554 ([pii]: S0002-9440(10)60869-3).
  19. 19.
    Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2015. doi: 10.1093/jb/mvv127.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Pinheiro C, Longatto-Filho A, Soares TR, Pereira H, Bedrossian C, Michael C, et al. CD147 immunohistochemistry discriminates between reactive mesothelial cells and malignant mesothelioma. Diagn Cytopathol. 2012;40(6):478–83. doi: 10.1002/dc.22821.CrossRefPubMedGoogle Scholar
  21. 21.
    Ross JA, Ansell I, Hjelle JT, Anderson JD, Miller-Hjelle MA, Dobbie JW. Phenotypic mapping of human mesothelial cells. Adv Perit Dial. 1998;14:25–30.PubMedGoogle Scholar
  22. 22.
    Geyer SJ. CD147 immunohistochemistry discriminates between reactive mesothelial cells and malignant mesothelioma: an expanded analysis of the data. Diagn Cytopathol. 2014;42(8):734. doi: 10.1002/dc.22985.CrossRefPubMedGoogle Scholar
  23. 23.
    Seeger H, Braun N, Latus J, Alscher MD, Fritz P, Edenhofer I, et al. Platelet-derived growth factor receptor-beta expression in human peritoneum. Nephron Clin Pract. 2014;128(1–2):178–84. doi: 10.1159/000368241.CrossRefPubMedGoogle Scholar
  24. 24.
    Latus J, Habib SM, Kitterer D, Korte MR, Ulmer C, Fritz P, et al. Histological and clinical findings in patients with post-transplantation and classical encapsulating peritoneal sclerosis: a European multicenter study. PloS one. 2014;9(8):e106511. doi: 10.1371/journal.pone.0106511.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Braun N, Fritz P, Ulmer C, Latus J, Kimmel M, Biegger D, et al. Histological criteria for encapsulating peritoneal sclerosis - a standardized approach. PloS one. 2012;7(11):e48647. doi: 10.1371/journal.pone.0048647.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Braun N, Alscher DM, Fritz P, Edenhofer I, Kimmel M, Gaspert A, et al. Podoplanin-positive cells are a hallmark of encapsulating peritoneal sclerosis. Nephrol Dial Transpl. 2011;26(3):1033–41. doi: 10.1093/ndt/gfq488.CrossRefGoogle Scholar
  27. 27.
    Grass GD, Dai L, Qin Z, Parsons C, Toole BP. CD147: regulator of hyaluronan signaling in invasiveness and chemoresistance. Adv Cancer Res. 2014;123:351–73. doi: 10.1016/b978-0-12-800092-2.00013-7.CrossRefPubMedGoogle Scholar
  28. 28.
    Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, et al. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res. 1995;55(2):434–9.PubMedGoogle Scholar
  29. 29.
    Tang J, Guo YS, Zhang Y, Yu XL, Li L, Huang W, et al. CD147 induces UPR to inhibit apoptosis and chemosensitivity by increasing the transcription of Bip in hepatocellular carcinoma. Cell Death Differ. 2012;19(11):1779–90. doi: 10.1038/cdd.2012.60.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rosenthal EL, Zhang W, Talbert M, Raisch KP, Peters GE. Extracellular matrix metalloprotease inducer-expressing head and neck squamous cell carcinoma cells promote fibroblast-mediated type I collagen degradation in vitro. Mol Cancer Res MCR. 2005;3(4):195–202. doi: 10.1158/1541-7786.mcr-04-0203.PubMedGoogle Scholar
  31. 31.
    Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, et al. Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem. 2002;277(46):44061–7. doi: 10.1074/jbc.M207205200.CrossRefPubMedGoogle Scholar
  32. 32.
    Kato N, Kosugi T, Sato W, Ishimoto T, Kojima H, Sato Y, et al. Basigin/CD147 promotes renal fibrosis after unilateral ureteral obstruction. Am J Pathol. 2011;178(2):572–9. doi: 10.1016/j.ajpath.2010.10.009.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol. 2010;160(3):305–17. doi: 10.1111/j.1365-2249.2010.04115.x.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Seizer P, May AE. Platelets and matrix metalloproteinases. Thromb Haemost. 2013;110(5):903–9. doi: 10.1160/TH13-02-0113.CrossRefPubMedGoogle Scholar
  35. 35.
    Kato N, Yuzawa Y, Kosugi T, Hobo A, Sato W, Miwa Y, et al. The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol. 2009;20(7):1565–76. doi: 10.1681/asn.2008090957.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schroppel B, Fischereder M, Wiese P, Segerer S, Huber S, Kretzler M, et al. Expression of glucose transporters in human peritoneal mesothelial cells. Kidney Int. 1998;53(5):1278–87.CrossRefPubMedGoogle Scholar
  37. 37.
    Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016;159(5):481–90. doi: 10.1093/jb/mvv127.CrossRefPubMedGoogle Scholar
  38. 38.
    Garosi G, Di Paolo N. Morphological aspects of peritoneal sclerosis. J Nephrol. 2001;14(Suppl 4):S30–8.PubMedGoogle Scholar
  39. 39.
    Goodlad C, Tarzi R, Gedroyc W, Lim A, Moser S, Brown EA. Screening for encapsulating peritoneal sclerosis in patients on peritoneal dialysis: role of CT scanning. Nephrol Dial Transpl. 2011;26(4):1374–9. doi: 10.1093/ndt/gfq533.CrossRefGoogle Scholar
  40. 40.
    De Vriese AS, Tilton RG, Stephan CC, Lameire NH. Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol. 2001;12(8):1734–41.PubMedGoogle Scholar
  41. 41.
    Aroeira LS, Aguilera A, Selgas R, Ramirez-Huesca M, Perez-Lozano ML, Cirugeda A, et al. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am J Kidney Dis. 2005;46(5):938–48. doi: 10.1053/j.ajkd.2005.08.011.CrossRefPubMedGoogle Scholar
  42. 42.
    Tang Y, Nakada MT, Kesavan P, McCabe F, Millar H, Rafferty P, et al. Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res. 2005;65(8):3193–9. doi: 10.1158/0008-5472.can-04-3605.CrossRefPubMedGoogle Scholar
  43. 43.
    Bougatef F, Quemener C, Kellouche S, Naimi B, Podgorniak MP, Millot G, et al. EMMPRIN promotes angiogenesis through hypoxia-inducible factor-2alpha-mediated regulation of soluble VEGF isoforms and their receptor VEGFR-2. Blood. 2009;114(27):5547–56. doi: 10.1182/blood-2009-04-217380.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2017

Authors and Affiliations

  • Harald Seeger
    • 1
    • 2
  • Joerg Latus
    • 3
  • Daniel Kitterer
    • 3
  • M. Dominik Alscher
    • 3
  • Dagmar Biegger
    • 4
  • Jin Chen
    • 1
    • 2
  • Ilka Edenhofer
    • 1
    • 2
  • Rudolf P. Wüthrich
    • 1
  • Stephan Segerer
    • 1
    • 5
  1. 1.Division of NephrologyUniversity HospitalZurichSwitzerland
  2. 2.Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland
  3. 3.Division of General Internal Medicine and Nephrology, Department of Internal MedicineRobert-Bosch-HospitalStuttgartGermany
  4. 4.Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
  5. 5.Division of Nephrology, Dialysis and TransplantationKantonsspitalAarauSwitzerland

Personalised recommendations