Advertisement

Clinical and Experimental Nephrology

, Volume 19, Issue 6, pp 1199–1205 | Cite as

Association of arginine vasopressin surrogate marker urinary copeptin with severity of autosomal dominant polycystic kidney disease (ADPKD)

  • Akiko Nakajima
  • Yan Lu
  • Haruna Kawano
  • Shigeo Horie
  • Satoru MutoEmail author
Original Article

Abstract

Background

Experimental studies suggest a detrimental role for cyclic adenosine monophosphate (cAMP) and vasopressin in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). It is unknown, however, whether urinary cAMP and copeptin concentration are associated with disease severity in patients with ADPKD.

Methods

Urinary cAMP (u-cAMP) and copeptin concentration (u-copeptin) were measured by immunoassay in ADPKD patients with CKD stage ≤4. We compared our measurements with clinical parameters including estimated glomerular filtration rate (eGFR), total kidney volume (TKV), and height-adjusted TKV (htTKV). Logarithmic transformation of all variables was performed to fulfill the requirement of equal distribution of the residuals.

Results

We included 50 patients in this study (24 females and 26 males; mean age: 49.3 years). The median eGFR and TKV were 53.2 ml/min/1.73 m2 (interquartile range: IQR; 29.4–68.45) and 1138.1 ml (IQR; 814.7–2065.0), respectively. The median u-copeptin level was 12.19 (IQR; 6.91–22.32) ng/ml. Although u-cAMP/u-Cr was not significantly correlated with TKV (R = −0.006, p = 0.967) and eGFR (R = 0.077, p = 0.602), urinary copeptin/u-Cr was statistically associated with the various markers of disease severity in ADPKD [positively with TKV (R = 0.351, p = 0.014), htTKV (R = 0.383, p = 0.008) and negatively with eGFR (R = −0.304, p = 0.036)].

Conclusions

In ADPKD subjects, a higher u-copeptin is associated with disease progression, suggesting that u-copeptin may be a new surrogate marker to predict renal prognosis in ADPKD.

Keywords

Autosomal dominant polycystic kidney disease Vasopressin Copeptin GFR Total kidney volume Marker 

Notes

Acknowledgments

This work was supported in part by a grant for the Progressive Renal Diseases Research Project from the Ministry of Health, Labour and Welfare of Japan.

Conflict of interest

Honoraria: Satoru Muto, Shigeo Horie (Otsuka Pharmaceutical); Subsidies or Donations: Satoru Muto, Haruna Kawano, Shigeo Horie (Otsuka Pharmaceutical); Endowed departments by commercial entities: Shigeo Horie (Otsuka Pharmaceutical); Travel fees, gifts, and others: Satoru Muto, Shigeo Horie (Otsuka Pharmaceutical).

References

  1. 1.
    Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369:1287–301.CrossRefPubMedGoogle Scholar
  2. 2.
    Mochizuki T, Tsuchiya K, Nitta K. Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and potential therapies. Clin Exp Nephrol. 2013;17:317–26.CrossRefPubMedGoogle Scholar
  3. 3.
    Robertson GL, Mahr EA, Athar S, Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest. 1973;52:2340–52.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Kluge M, Riedl S, Erhart-Hofmann B, Hartmann J, Waldhauser F. Improved extraction procedure and RIA for determination of arginine8-vasopressin in plasma: role of premeasurement sample treatment and reference values in children. Clin Chem. 1999;45:98–103.PubMedGoogle Scholar
  5. 5.
    de Bree FM, Burbach JP. Structure-function relationships of the vasopressin prohormone domains. Cell Mol Neurobiol. 1998;18:173–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Morgenthaler NG, Struck J, Jochberger S, Dunser MW. Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab. 2008;19:43–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Szinnai G, Morgenthaler NG, Berneis K, Struck J, Müller B, Keller U, et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J Clin Endocrinol Metab. 2007;92:3973–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, et al. Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J Clin Endocrinol Metab. 2014;99(12):4656–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Boertien WE, Meijer E, Li J, Bost JE, Struck J, Flessner MF, et al. Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am J Kidney Dis. 2013;61:420–9.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Meijer E, Bakker SJ, van der Jagt EJ, Navis G, de Jong PE, Struck J, et al. Copeptin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010;6:361–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Boertien WE, Meijer E, Zittema D, van Dijk MA, Rabelink TJ, Breuning MH, et al. Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2012;27:4131–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Zittema D, Berg EV, Meijer E, Boertien WE, Muller Kobold AC, Franssen CFM, et al. kidney function and plasma copeptin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients. Clin J Am Soc Nephol. 2014;9:1533–62.Google Scholar
  14. 14.
    Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet. 1994;343:824–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Tokiwa S, Muto S, China T, Horie S. The relationship between renal volume and renal function in autosomal dominant polycystic kidney disease. Clin Exp Nephrol. 2011;15:539–45.CrossRefPubMedGoogle Scholar
  17. 17.
    Barash I, Ponda MP, Goldfarb DS, Skolnik EY. A pilot clinical study to evaluate changes in urine osmolality and urine cAMP in response to acute and chronic water loading in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5:693–7.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Zittema D, Boertien WE, van Beek AP, Dullaart RP, Franssen CF, de Jong PE, et al. Vasopressin, copeptin and renal concentrating capacity in ADPKD patients without renal impairment. Clin J Am Soc Nephrol. 2012;7:906–13.CrossRefPubMedGoogle Scholar
  19. 19.
    R Development Core Team. R. a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2011.Google Scholar
  20. 20.
    Graffe CC, Bech JN, Lauridsen TG, Pedersen EB. Urinary excretion of AQP2 and ENaC in autosomal dominant polycystic kidney disease during basal conditions and after a hypertonic saline infusion. Am J Physiol Renal Physiol. 2012;302:F917–27.CrossRefPubMedGoogle Scholar
  21. 21.
    Meijer E, Bakker SJ, Halbesma N, de Jong PE, Struck J, Gansevoort RT. Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort. Kidney Int. 2010;77:29–36.CrossRefPubMedGoogle Scholar
  22. 22.
    Bhandari SS, Loke I, Davies JE, Squire IB, Struck J, Ng LL. Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin Sci (Lond). 2009;116:257–63.CrossRefGoogle Scholar
  23. 23.
    Przybylowski P, Malyszko J, Malyszko JS. Copeptin in heart transplant recipients depends on kidney function and intraventricular septal thickness. Transplant Proc. 2010;42:1808–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA, et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol. 2007;18:1057–71.CrossRefPubMedGoogle Scholar
  25. 25.
    Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7:479–86.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Meijer E, Rook M, Tent H, Navis G, van der Jagt EJ, de Jong PE, et al. Early renal abnormalities in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5:1091–8.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Fick GM, Duley IT, Johnson AM, Strain JD, Manco-Johnson ML, Gabow PA. The spectrum of autosomal dominant polycystic kidney disease in children. J Am Soc Nephrol. 1994;4:1654–60.PubMedGoogle Scholar
  28. 28.
    Meijer E, Bakker SJ, de Jong PE, Homan van der Heide JJ, van Son WJ, Struck J, et al. Copeptin, a surrogate marker of vasopressin, is associated with accelerated renal function decline in renal transplant recipients. Transplantation. 2009;88:561–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Littlejohn NK, Siel RB Jr, Ketsawatsomkron P, Pelham CJ, Pearson NA, Hilzendeger AM, et al. Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. Am J Physiol Regul Integr Comp Physiol. 2013;304:R818–28.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Hilzendeger AM, Cassell MD, Davis DR, Stauss HM, Mark AL, Grobe JL, et al. Angiotensin type 1a receptors in the subfornical organ are required for deoxycorticosterone acetate-salt hypertension. Hypertension. 2013;61:716–22.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Kistler AD, Serra AL, Siwy J, Poster D, Krauer F, Torres VE, et al. urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS one. 2013;8:e5301.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2015

Authors and Affiliations

  • Akiko Nakajima
    • 1
  • Yan Lu
    • 1
  • Haruna Kawano
    • 2
  • Shigeo Horie
    • 2
  • Satoru Muto
    • 1
    Email author
  1. 1.Department of UrologyTeikyo University School of MedicineTokyoJapan
  2. 2.Department of UrologyGraduate School of Medicine, Juntendo UniversityTokyoJapan

Personalised recommendations