Clinical and Experimental Nephrology

, Volume 17, Issue 6, pp 751–764 | Cite as

Vasopressin and the regulation of aquaporin-2

  • Justin L. L. Wilson
  • Carlos A. Miranda
  • Mark A. KnepperEmail author
Review Article


Water excretion is regulated in large part through the regulation of osmotic water permeability of the renal collecting duct epithelium. Water permeability is controlled by vasopressin through regulation of the water channel, aquaporin-2 (AQP2). Two processes contribute: (1) regulation of AQP2 trafficking to the apical plasma membrane; and (2) regulation of the total amount of the AQP2 protein in the cells. Regulation of AQP2 abundance is defective in several water-balance disorders, including many polyuric disorders and the syndrome of inappropriate antidiuresis. Here we review vasopressin signaling in the renal collecting duct that is relevant to the two modes of water permeability regulation.


Vasopressin Trafficking Transcription Polyuria Hyponatremia SIADH 


Conflict of interest

All authors declare no competing interest.


  1. 1.
    Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–44.PubMedGoogle Scholar
  2. 2.
    Rojek A, Fuchtbauer EM, Kwon TH, Frokiaer J, Nielsen S. Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA. 2006;103:6037–42.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol. 1993;120:371–83.PubMedGoogle Scholar
  4. 4.
    Maeda Y, Smith BL, Agre P, Knepper MA. Quantification of aquaporin-CHIP water channel protein in microdissected renal tubules by fluorescence-based ELISA. J Clin Investig. 1995;95:422–8.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Knepper MA, Valtin H, Sands JM. Renal actions of vasopressin. In: Fray JCS, editor. Handbook of physiology: the endocrine system (section 7). New York: Oxford; 2000. p. 496–529.Google Scholar
  6. 6.
    Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993;361:549–52.PubMedGoogle Scholar
  7. 7.
    Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, Knepper MA. Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol Ren Physiol. 1995;269:F663–72.Google Scholar
  8. 8.
    Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol Ren Physiol. 1995;269:F775–85.Google Scholar
  9. 9.
    Ecelbarger CA, Nielsen S, Olson BR, Murase T, Baker EA, Knepper MA, Verbalis JG. Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat. J Clin Investig. 1997;99:1852–63.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA. 1995;92:1013–7.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA. 1993;90:11663–7.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hayashi M, Sasaki S, Tsuganezawa H, Monkawa T, Kitajima W, Konishi K, Fushimi K, Marumo F, Saruta T. Expression and distribution of aquaporin of collecting duct are regulated by V2 receptor in rat kidney. J Clin Investig. 1994;94:1778–83.PubMedPubMedCentralGoogle Scholar
  13. 13.
    DiGiovanni SR, Nielsen S, Christensen EI, Knepper MA. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci USA. 1994;91:8984–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoffert JD, Chou CL, Fenton RA, Knepper MA. Calmodulin is required for vasopressin-stimulated increase in cyclic AMP production in inner medullary collecting duct. J Biol Chem. 2005;280:13624–30.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Grantham JJ, Burg MB. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966;211:255–9.PubMedGoogle Scholar
  16. 16.
    Wall SM, Han JS, Chou CL, Knepper MA. Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol. 1992;262:F989–98.PubMedGoogle Scholar
  17. 17.
    Pisitkun T, Jacob V, Schleicher SM, Chou CL, Yu MJ, Knepper MA. Akt and ERK1/2 pathways are components of the vasopressin signaling network in rat native IMCD. Am J Physiol Ren Physiol. 2008;295:F1030–43.Google Scholar
  18. 18.
    Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T, Knepper MA. Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci USA. 2010;107:3887.Google Scholar
  19. 19.
    Hoffert JD, Pisitkun T, Saeed F, Song JH, Chou CL, Knepper MA. Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics. Mol Cell Proteomics. 2012;11:M111.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Nedvetsky PI, Tabor V, Tamma G, Beulshausen S, Skroblin P, Kirschner A, Mutig K, Boltzen M, Petrucci O, Vossenkamper A, Wiesner B, Bachmann S, Rosenthal W, Klussmann E. Reciprocal regulation of aquaporin-2 abundance and degradation by protein kinase A and p38-MAP kinase. J Am Soc Nephrol. 2010;21:1645–56.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Douglass J, Gunaratne R, Bradford D, Saeed F, Hoffert JD, Steinbach PJ, Knepper MA, Pisitkun T. Identifying protein kinase target preferences using mass spectrometry. Am J Physiol Cell Physiol. 2012;303:C715–27.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA. 2006;103:7159–64.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Nishimoto G, Zelenina M, Li D, Yasui M, Aperia A, Nielsen S, Nairn AC. Arginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue. Am J Physiol. 1999;276:F254–9.PubMedGoogle Scholar
  24. 24.
    Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA. Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem. 2008;283:24617–27.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Fenton RA, Moeller HB, Hoffert JD, Yu M-J, Nielsen S, Knepper MA. Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci USA. 2008;105:3134–9.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Moeller HB, Knepper MA, Fenton RA. Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int. 2008;75:295–303.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Hoffert JD, Nielsen J, Yu MJ, Pisitkun T, Schleicher SM, Nielsen S, Knepper MA. Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Ren Physiol. 2007;292:F691–700.Google Scholar
  28. 28.
    Xie L, Hoffert JD, Chou CL, Yu MJ, Pisitkun T, Knepper MA, Fenton RA. Quantitative analysis of aquaporin-2 phosphorylation. Am J Physiol Ren Physiol. 2010;298:F1018–23.Google Scholar
  29. 29.
    Star RA, Nonoguchi H, Balaban R, Knepper MA. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Investig. 1988;81:1879–88.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Chou CL, Yip KP, Knepper MA. Role of Ca/calmodulin in vasopressin-stimulated aquaporin-2 trafficking in rat collecting duct. J Am Soc Nephrol. 1999;10:13A.Google Scholar
  31. 31.
    Yip KP. Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct. J Physiol. 2002;538:891–9.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yip KP. Epac-mediated Ca2+ mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Ren Physiol. 2006;291:F882–90.Google Scholar
  33. 33.
    Kortenoeven ML, Trimpert C, van den BM, Li Y, Wetzels JF, Deen PM. In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac. Am J Physiol Ren Physiol. 2012;302:F1395–401.Google Scholar
  34. 34.
    Chou CL, Christensen BM, Frische S, Vorum H, Desai RA, Hoffert JD, de Lanerolle P, Nielsen S, Knepper MA. Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem. 2004;279:49026–35.PubMedGoogle Scholar
  35. 35.
    Chou CL, Yip KP, Michea L, Kador K, Ferraris J, Wade JB, Knepper MA. Regulation of aquaporin-2 trafficking by vasopressin in renal collecting duct: roles of ryanodine-sensitive Ca2+ stores and calmodulin. J Biol Chem. 2000;275:36839–46.PubMedGoogle Scholar
  36. 36.
    Chou CL, Yu MJ, Kassai EM, Morris RG, Hoffert JD, Wall SM, Knepper MA. Roles of basolateral solute uptake via NKCC1 and of myosin II in vasopressin-induced cell swelling in inner medullary collecting duct. Am J Physiol Ren Physiol. 2008;295:F192–201.Google Scholar
  37. 37.
    Ando Y, Jacobson HR, Breyer MD. Phorbol ester and A23187 have additive but mechanistically separate effects on vasopressin action in rabbit collecting tubule. J Clin Investig. 1988;81:1578–84.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Dixon BS, Breckon R, Burke C, Anderson RJ. Phorbol esters inhibit adenylate cyclase activity in cultured collecting tubular cells. Am J Physiol. 1988;254:C183–91.PubMedGoogle Scholar
  39. 39.
    Chou CL, Rapko SI, Knepper MA. Phosphoinositide signaling in rat inner medullary collecting duct. Am J Physiol. 1998;274:F564–72.PubMedGoogle Scholar
  40. 40.
    Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W. An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem. 2001;276:20451–7.PubMedGoogle Scholar
  41. 41.
    van Balkom BW, Hoffert JD, Chou CL, Knepper MA. Proteomic analysis of long-term vasopressin action in the inner medullary collecting duct of the Brattleboro rat. Am J Physiol Ren Physiol. 2004;286:F216–24.Google Scholar
  42. 42.
    Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D. Epithelial sodium channel regulated by aldosterone-induced protein SGK. Proc Natl Acad Sci USA. 1999;96:2514–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Uawithya P, Pisitkun T, Ruttenberg BE, Knepper MA. Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics. 2008;32:229–53.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–12.PubMedGoogle Scholar
  45. 45.
    Naray-Fejes-Toth A, Snyder PM, Fejes-Toth G. The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport. Proc Natl Acad Sci USA. 2004;101:17434–9.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Klokkers J, Langehanenberg P, Kemper B, Kosmeier S, von Bally G, Riethmuller C, Wunder F, Sindic A, Pavenstadt H, Schlatter E, Edemir B. Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. Am J Physiol Ren Physiol. 2009;297:F693–703.Google Scholar
  47. 47.
    Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Investig. 2000;106:1115–26.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Stewart GS, Thistlethwaite A, Lees H, Cooper GJ, Smith C. Vasopressin regulation of the renal UT-A3 urea transporter. Am J Physiol Ren Physiol. 2009;296:F642–8.Google Scholar
  49. 49.
    Mansley MK, Wilson SM. Dysregulation of epithelial Na+ absorption induced by inhibition of the kinases TORC1 and TORC2. Br J Pharmacol. 2010;161:1778–92.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Rao R, Patel S, Hao C, Woodgett J, Harris R. GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol. 2010;21:428–37.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Torres VE, Sweeney WE Jr, Wang X, Qian Q, Harris PC, Frost P, Avner ED. EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han:SPRD rats. Kidney Int. 2003;64:1573–9.PubMedGoogle Scholar
  52. 52.
    Breyer MD, Jacobson HR, Breyer JA. Epidermal growth factor inhibits the hydroosmotic effect of vasopressin in the isolated perfused rabbit cortical collecting tubule. J Clin Investig. 1988;82:1313–20.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bustamante M, Hasler U, Kotova O, Chibalin AV, Mordasini D, Rousselot M, Vandewalle A, Martin PY, Feraille E. Insulin potentiates AVP-induced AQP2 expression in cultured renal collecting duct principal cells. Am J Physiol Ren Physiol. 2005;288:F334–44.Google Scholar
  54. 54.
    Zhao B, Knepper MA, Chou CL, Pisitkun T. Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination. Am J Physiol Cell Physiol. 2012;302:C27–45.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bansal AD, Hoffert JD, Pisitkun T, Hwang S, Chou CL, Boja ES, Wang G, Knepper MA. Phosphoproteomic profiling reveals vasopressin-regulated phosphorylation sites in collecting duct. J Am Soc Nephrol. 2010;21:303–15.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Bolger SJ, Gonzales Hurtado PA, Hoffert JD, Saeed F, Pisitkun T, Knepper MA. Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells. Am J Physiol Cell Physiol. 2012;303:C1006–20.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Gunaratne R, Braucht DW, Rinschen MM, Chou CL, Hoffert JD, Pisitkun T, Knepper MA. Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells. Proc Natl Acad Sci USA. 2010;107:15653–8.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Schenk LK, Bolger SJ, Luginbuhl K, Gonzales PA, Rinschen MM, Yu MJ, Hoffert JD, Pisitkun T, Knepper MA. Quantitative proteomics identifies vasopressin-responsive nuclear proteins in collecting duct cells. J Am Soc Nephrol. 2012;23:1008–18.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem. 2007;282:11221–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Daugherty RL, Gottardi CJ. Phospho-regulation of beta-catenin adhesion and signaling functions. Physiology (Bethesda). 2007;22:303–9.Google Scholar
  61. 61.
    Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR. Phosphorylation of c-jun mediated by MAP kinases. Nature. 1991;353:670–4.PubMedGoogle Scholar
  62. 62.
    Adler V, Polotskaya A, Wagner F, Kraft AS. Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J Biol Chem. 1992;267:17001–5.PubMedGoogle Scholar
  63. 63.
    Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature. 1991;354:494–6.PubMedGoogle Scholar
  64. 64.
    Yu MJ, Miller RL, Uawithya P, Rinschen MM, Khositseth S, Braucht DW, Chou CL, Pisitkun T, Nelson RD, Knepper MA. Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. Proc Natl Acad Sci USA. 2009;106:2441–6.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Yasui M, Zelenin SM, Celsi G, Aperia A. Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol Ren Physiol. 1997;272:F443–50.Google Scholar
  66. 66.
    Yang CX, Chen HQ, Chen C, Yu WP, Zhang WC, Peng YJ, He WQ, Wei DM, Gao X, Zhu MS. Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase. Cell Res. 2006;16:367–76.PubMedGoogle Scholar
  67. 67.
    Ecelbarger CA, Chou CL, Lolait SJ, Knepper MA, DiGiovanni SR. Evidence for dual signaling pathways for V2 vasopressin receptor in rat inner medullary collecting duct. Am J Physiol. 1996;270:F623–33.PubMedGoogle Scholar
  68. 68.
    Ankorina-Stark I, Haxelmans S, Schlatter E. Functional evidence for the regulation of cytosolic Ca2+ activity via V1A-receptors and beta-adrenoceptors in rat CCD. Cell Calcium. 1997;21:163–71.PubMedGoogle Scholar
  69. 69.
    Tashima Y, Kohda Y, Nonoguchi H, Ikebe M, Machida K, Star RA, Tomita K. Intranephron localization and regulation of the V1a vasopressin receptor during chronic metabolic acidosis and dehydration in rats. Pflugers Arch. 2001;442:652–61.PubMedGoogle Scholar
  70. 70.
    Carmosino M, Brooks HL, Cai Q, Davis LS, Opalenik S, Hao C, Breyer MD. Axial heterogeneity of vasopressin-receptor subtypes along the human and mouse collecting duct. Am J Physiol Ren Physiol. 2007;292:F351–60.Google Scholar
  71. 71.
    Izumi Y, Hori K, Nakayama Y, Kimura M, Hasuike Y, Nanami M, Kohda Y, Otaki Y, Kuragano T, Obinata M, Kawahara K, Tanoue A, Tomita K, Nakanishi T, Nonoguchi H. Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acid-base homeostasis. J Am Soc Nephrol. 2011;22:673–80.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Barile M, Pisitkun T, Yu MJ, Chou CL, Verbalis MJ, Shen RF, Knepper MA. Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics. 2005;4:1095–106.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Nedvetsky PI, Stefan E, Frische S, Santamaria K, Wiesner B, Valenti G, Hammer JA III, Nielsen S, Goldenring JR, Rosenthal W, Klussmann E. A role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic. 2007;8:110–23.PubMedGoogle Scholar
  74. 74.
    Knepper MA, Nielsen S. Kinetic model of water and urea permeability regulation by vasopressin in collecting duct. Am J Physiol. 1993;265:F214–24.PubMedGoogle Scholar
  75. 75.
    Nielsen S, Knepper MA. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Physiol. 1993;265:F204–13.PubMedGoogle Scholar
  76. 76.
    Brown D. The ins and outs of aquaporin-2 trafficking. Am J Physiol Ren Physiol. 2003;284:F893–901.Google Scholar
  77. 77.
    Brown D, Hasler U, Nunes P, Bouley R, Lu HA. Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr Opin Nephrol Hypertens. 2008;17:491–8.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D. Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Ren Physiol. 2004;286:F233–43.Google Scholar
  79. 79.
    Simon H, Gao Y, Franki N, Hays RM. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol. 1993;265:C757–62.PubMedGoogle Scholar
  80. 80.
    Valenti G, Procino G, Tamma G, Carmosino M, Svelto M. Minireview: aquaporin 2 trafficking. Endocrinology. 2005;146:5063–70.PubMedGoogle Scholar
  81. 81.
    Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 1996;15:510–9.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal W, Valenti G. cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci. 2003;116:1519–25.PubMedGoogle Scholar
  83. 83.
    Tamma G, Klussmann E, Maric K, Aktories K, Svelto M, Rosenthal W, Valenti G. Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells. Am J Physiol Ren Physiol. 2001;281:F1092–101.Google Scholar
  84. 84.
    Noda Y, Horikawa S, Katayama Y, Sasaki S. Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun. 2004;322:740–5.PubMedGoogle Scholar
  85. 85.
    Noda Y, Horikawa S, Katayama Y, Sasaki S. Identification of a multiprotein “motor” complex binding to water channel aquaporin-2. Biochem Biophys Res Commun. 2005;330:1041–7.PubMedGoogle Scholar
  86. 86.
    Noda Y, Horikawa S, Kanda E, Yamashita M, Meng H, Eto K, Li Y, Kuwahara M, Hirai K, Pack C, Kinjo M, Okabe S, Sasaki S. Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J Cell Biol. 2008;182:587–601.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Tamma G, Klussmann E, Oehlke J, Krause E, Rosenthal W, Svelto M, Valenti G. Actin remodeling requires ERM function to facilitate AQP2 apical targeting. J Cell Sci. 2005;118:3623–30.PubMedGoogle Scholar
  88. 88.
    Hoffert JD, Wang G, Pisitkun T, Shen RF, Knepper MA. An automated platform for analysis of phosphoproteomic datasets: application to kidney collecting duct phosphoproteins. J Proteome Res. 2007;6:3501–8.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Tamma G, Robben JH, Trimpert C, Boone M, Deen PM. Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. Am J Physiol Cell Physiol. 2011;300:C636–46.PubMedGoogle Scholar
  90. 90.
    Boone M, Kortenoeven ML, Robben JH, Tamma G, Deen PM. Counteracting vasopressin-mediated water reabsorption by ATP, dopamine, and phorbol esters: mechanisms of action. Am J Physiol Ren Physiol. 2011;300:F761–71.Google Scholar
  91. 91.
    Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin QH, Brown D. The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Ren Physiol. 2008;295:F290–4.Google Scholar
  92. 92.
    Moeller HB, Praetorius J, Rutzler MR, Fenton RA. Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc Natl Acad Sci USA. 2010;107:424–9.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Rice WL, Zhang Y, Chen Y, Matsuzaki T, Brown D, Lu HA. Differential, phosphorylation dependent trafficking of AQP2 in LLC-PK1 cells. PLoS ONE. 2012;7:e32843.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kanno K, Sasaki S, Hirata Y, Ishikawa S, Fushimi K, Nakanishi S, Bichet DG, Marumo F. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med. 1995;332:1540–5.PubMedGoogle Scholar
  95. 95.
    Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101:13368–73.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Pisitkun T, Johnstone R, Knepper MA. Discovery of urinary biomarkers. Mol Cell Proteomics. 2006;5:1760–71.PubMedGoogle Scholar
  97. 97.
    Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009;20:363–79.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Elliot S, Goldsmith P, Knepper M, Haughey M, Olson B. Urinary excretion of aquaporin-2 in humans: a potential marker of collecting duct responsiveness to vasopressin. J Am Soc Nephrol. 1996;7:403–9.PubMedGoogle Scholar
  99. 99.
    Deen PM, van Aubel RA, van Lieburg AF, van Os CH. Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol. 1996;7:836–41.PubMedGoogle Scholar
  100. 100.
    Saito T, Ishikawa SE, Sasaki S, Nakamura T, Rokkaku K, Kawakami A, Honda K, Marumo F, Saito T. Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. J Clin Endocrinol Metab. 1997;82:1823–7.PubMedGoogle Scholar
  101. 101.
    Rai T, Sekine K, Kanno K, Hata K, Miura M, Mizushima A, Marumo F, Sasaki S. Urinary excretion of aquaporin-2 water channel protein in human and rat. J Am Soc Nephrol. 1997;8:1357–62.PubMedGoogle Scholar
  102. 102.
    Fernandez-Llama P, Turner R, DiBona G, Knepper M. Renal expression of aquaporins in liver cirrhosis induced by chronic bile duct ligation in rats. J Am Soc Nephrol. 1999;10:1950–7.PubMedGoogle Scholar
  103. 103.
    Gonzales P, Pisitkun T, Knepper MA. Urinary exosomes: is there a future? Nephrol Dial Transplant. 2008;23:1799–801.PubMedGoogle Scholar
  104. 104.
    van Balkom BW, Pisitkun T, Verhaar MC, Knepper MA. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 2011;80:1138–45.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Tamarappoo BK, Verkman AS. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Investig. 1998;101:2257–67.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der SP, Klumperman J, Deen PM. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA. 2006;103:18344–9.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Sandoval P, Slentz D, Pisitkun T, Yu M-J, Miller RL, Hoffert J, Knepper MA. LC–MS/MS-based large-scale profiling of protein half lives in renal collecting duct cells reveals that vasopressin increases half-life of aquaporin-2 protein. FASEB J. 2011;25:1039.37.Google Scholar
  108. 108.
    Terris J, Ecelbarger CA, Nielsen S, Knepper MA. Long-term regulation of four renal aquaporins in rat. Am J Physiol. 1996;271:F414–22.PubMedGoogle Scholar
  109. 109.
    Kitamura M. Endoplasmic reticulum stress in the kidney. Clin Exp Nephrol. 2008;12:317–25.PubMedGoogle Scholar
  110. 110.
    Hayashi M, Sasaki S, Tsuganezawa H, Monkawa T, Kitajima W, Konishi K, Fushimi K, Marumo F, Saruta T. Role of vasopressin V2 receptor in acute regulation of aquaporin-2. Kidney Blood Press Res. 1996;19:32–7.PubMedGoogle Scholar
  111. 111.
    Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell. 2007;25:635–46.PubMedGoogle Scholar
  112. 112.
    Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol. 2008;20:214–21.PubMedGoogle Scholar
  113. 113.
    Bens M, Vallet V, Cluzeaud F, Pascual-Letallec L, Kahn A, Rafestin-Oblin ME, Rossier BC, Vandewalle A. Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. J Am Soc Nephrol. 1999;10:923–34.PubMedGoogle Scholar
  114. 114.
    Hasler U, Mordasini D, Bens M, Bianchi M, Cluzeaud F, Rousselot M, Vandewalle A, Feraille E, Martin PY. Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J Biol Chem. 2002;277:10379–86.PubMedGoogle Scholar
  115. 115.
    Saito T, Ishikawa S, Sasaki S, Higashiyama M, Nagasaka S, Fujita N, Fushimi K, Marumo F. Lack of vasopressin-independent upregulation of AQP-2 gene expression in homozygous Brattleboro rats. Am J Physiol. 1999;277:R427–33.PubMedGoogle Scholar
  116. 116.
    Uchida S, Sasaki S, Fushimi K, Marumo F. Isolation of human aquaporin-CD gene. J Biol Chem. 1994;269:23451–5.PubMedGoogle Scholar
  117. 117.
    Tchapyjnikov D, Li Y, Pisitkun T, Hoffert JD, Yu MJ, Knepper MA. Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC–MS/MS. Physiol Genomics. 2010;40:167–83.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Rai T, Uchida S, Marumo F, Sasaki S. Cloning of rat and mouse aquaporin-2 gene promoters and identification of a negative cis-regulatory element. Am J Physiol. 1997;273:F264–73.PubMedGoogle Scholar
  119. 119.
    Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA. Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA. 2008;105:3634–9.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Hozawa S, Holtzman EJ, Ausiello DA. cAMP motifs regulating transcription in the aquaporin-2 gene. Am J Physiol. 1996;270:C1695–702.PubMedGoogle Scholar
  121. 121.
    Matsumura Y, Uchida S, Rai T, Sasaki S, Marumo F. Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol. 1997;8:861–7.PubMedGoogle Scholar
  122. 122.
    Furuno M, Uchida S, Marumo F, Sasaki S. Repressive regulation of the aquaporin-2 gene. Am J Physiol. 1996;271:F854–60.PubMedGoogle Scholar
  123. 123.
    Uchida S, Matsumura Y, Rai T, Sasaki S, Marumo F. Regulation of aquaporin-2 gene transcription by GATA-3. Biochem Biophys Res Commun. 1997;232:65–8.PubMedGoogle Scholar
  124. 124.
    Hasler U, Jeon US, Kim JA, Mordasini D, Kwon HM, Feraille E, Martin PY. Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells. J Am Soc Nephrol. 2006;17:1521–31.PubMedGoogle Scholar
  125. 125.
    Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003;17:2205–32.PubMedGoogle Scholar
  126. 126.
    Li SZ, McDill BW, Kovach PA, Ding L, Go WY, Ho SN, Chen F. Calcineurin-NFATc signaling pathway regulates AQP2 expression in response to calcium signals and osmotic stress. Am J Physiol Cell Physiol. 2007;292:C1606–16.PubMedGoogle Scholar
  127. 127.
    Cha JH, Woo SK, Han KH, Kim YH, Handler JS, Kim J, Kwon HM. Hydration status affects nuclear distribution of transcription factor tonicity responsive enhancer binding protein in rat kidney. J Am Soc Nephrol. 2001;12:2221–30.PubMedGoogle Scholar
  128. 128.
    Schmale H, Richter D. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature. 1984;308:705–9.PubMedGoogle Scholar
  129. 129.
    Kishore BK, Terris JM, Knepper MA. Quantitation of aquaporin-2 abundance in microdissected collecting ducts: axial distribution and control by AVP. Am J Physiol. 1996;271:F62–70.PubMedGoogle Scholar
  130. 130.
    Cadnapaphornchai MA, Summer SN, Falk S, Thurman JM, Knepper MA, Schrier RW. Effect of primary polydipsia on aquaporin and sodium transporter abundance 1. Am J Physiol Ren Physiol. 2003;285:F965–71.Google Scholar
  131. 131.
    Valtin H. “Drink at least eight glasses of water a day.” Really? Is there scientific evidence for “8 × 8”? Am J Physiol Regul Integr Comp Physiol. 2002;283:R993–1004.PubMedGoogle Scholar
  132. 132.
    Harbaugh C, Knepper MA. Do you have a drinking problem? Run Times. 2007;9:14–7.Google Scholar
  133. 133.
    Bichet DG. Hereditary polyuric disorders: new concepts and differential diagnosis 6. Semin Nephrol. 2006;26:224–33.PubMedGoogle Scholar
  134. 134.
    Deen PM, Marr N, Kamsteeg EJ, van Balkom BW. Nephrogenic diabetes insipidus. Curr Opin Nephrol Hypertens. 2000;9:591–5.PubMedGoogle Scholar
  135. 135.
    Frokiaer J, Marples D, Knepper MA, Nielsen S. Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol. 1996;270:F657–68.PubMedGoogle Scholar
  136. 136.
    Frokiaer J, Christensen BM, Marples D, Djurhuus JC, Jensen UB, Knepper MA, Nielsen S. Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction. Am J Physiol. 1997;273:F213–23.PubMedGoogle Scholar
  137. 137.
    Li C, Wang W, Kwon TH, Isikay L, Wen JG, Marples D, Djurhuus JC, Stockwell A, Knepper MA, Nielsen S, Frokiaer J. Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. Am J Physiol Ren Physiol. 2001;281:F163–71.Google Scholar
  138. 138.
    Marples D, Frokiaer J, Dorup J, Knepper MA, Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Investig. 1996;97:1960–8.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Amlal H, Krane CM, Chen Q, Soleimani M. Early polyuria and urinary concentrating defect in potassium deprivation. Am J Physiol Ren Physiol. 2000;279:F655–63.Google Scholar
  140. 140.
    Earm JH, Christensen BM, Frokiaer J, Marples D, Han JS, Knepper MA, Nielsen S. Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J Am Soc Nephrol. 1998;9:2181–93.PubMedGoogle Scholar
  141. 141.
    Marples D, Christensen S, Christensen EI, Nielsen S. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Investig. 1995;95:1838–45.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Christensen S, Kusano E, Yusufi AN, Murayama N, Dousa TP. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. J Clin Investig. 1985;75:1869–79.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Laursen UH, Pihakaski-Maunsbach K, Kwon TH, Ostergaard JE, Nielsen S, Maunsbach AB. Changes of rat kidney AQP2 and Na, K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp Nephrol. 2004;97:e1–16.PubMedGoogle Scholar
  144. 144.
    Li Y, Shaw S, Kamsteeg EJ, Vandewalle A, Deen PM. Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol. 2006;17:1063–72.PubMedGoogle Scholar
  145. 145.
    Schrier RW, Ohara M, Rogachev B, Xu L, Knotek M. Aquaporin-2 water channels and vasopressin antagonists in edematous disorders. Mol Genet Metab. 1998;65:255–63.PubMedGoogle Scholar
  146. 146.
    Nielsen S, Terris J, Andersen D, Ecelbarger C, Frokiaer J, Jonassen T, Marples D, Knepper MA, Petersen JS. Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc Natl Acad Sci USA. 1997;94:5450–5.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Xu DL, Martin PY, Ohara M, St JJ, Pattison T, Meng X, Morris K, Kim JK, Schrier RW. Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Investig. 1997;99:1500–5.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Veeraveedu PT, Watanabe K, Ma M, Palaniyandi SS, Yamaguchi K, Suzuki K, Kodama M, Aizawa Y. Effects of nonpeptide vasopressin V2 antagonist tolvaptan in rats with heart failure. Biochem Pharmacol. 2007;74:1466–75.PubMedGoogle Scholar
  149. 149.
    Robertson GL. Vaptans for the treatment of hyponatremia. Nat Rev Endocrinol. 2011;7:151–61.PubMedGoogle Scholar
  150. 150.
    Jonassen TEN, Nielsen S, Christensen S, Petersen JS. Decreased vasopressin-mediated renal water reabsorption in rats with compensated liver cirrhosis. Am J Physiol. 1998;275:F216–25.PubMedGoogle Scholar
  151. 151.
    Fujita N, Ishikawa SE, Sasaki S, Fujisawa G, Fushimi K, Marumo F, Saito T. Role of water channel AQP-CD in water retention in SIADH and cirrhotic rats. Am J Physiol. 1995;269:F926–31.PubMedGoogle Scholar
  152. 152.
    Fernandez-Llama P, Jimenez W, Bosch-Marce M, Arroyo V, Nielsen S, Knepper MA. Dysregulation of renal aquaporins and Na–Cl cotransporter in CCl4-induced cirrhosis. Kidney Int. 2000;58:216–28.PubMedGoogle Scholar
  153. 153.
    Apostol E, Ecelbarger CA, Terris T, Bradford AD, Andrews P, Knepper MA. Reduced renal medullary water channel expression in puromycin aminonucleoside-induced nephrotic syndrome. J Am Soc Nephrol. 1997;8:15–24.PubMedGoogle Scholar
  154. 154.
    Fernandez-Llama P, Andrews P, Ecelbarger CA, Nielsen S, Knepper MA. Concentrating defect in experimental nephrotic syndrome: altered expression of aquaporins and thick ascending limb Na+ transporters. Kidney Int. 1998;54:170–9.PubMedGoogle Scholar
  155. 155.
    Saito T, Higashiyama M, Nagasaka S, Sasaki S, Saito T, Ishikawa SE. Role of aquaporin-2 gene expression in hyponatremic rats with chronic vasopressin-induced antidiuresis. Kidney Int. 2001;60:1266–76.PubMedGoogle Scholar
  156. 156.
    Ecelbarger CA, Chou CL, Lee AJ, DiGiovanni SR, Verbalis JG, Knepper MA. Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. Am J Physiol. 1998;274:F1161–6.PubMedGoogle Scholar
  157. 157.
    Levtchenko EN, Monnens LA. Nephrogenic syndrome of inappropriate antidiuresis. Nephrol Dial Transplant. 2010;25:2839–43.PubMedGoogle Scholar

Copyright information

© Japanese Society of Nephrology (outside the USA) 2013

Authors and Affiliations

  • Justin L. L. Wilson
    • 1
  • Carlos A. Miranda
    • 1
  • Mark A. Knepper
    • 1
    Email author
  1. 1.Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations