Clinical and Experimental Nephrology

, Volume 17, Issue 1, pp 83–91 | Cite as

Value and level of circulating endothelial progenitor cells, angiogenesis factors and mononuclear cell apoptosis in patients with chronic kidney disease

  • Yen-Ta Chen
  • Ben-Chung Cheng
  • Sheung-Fat Ko
  • Chih-Hung Chen
  • Tzu-Hsien Tsai
  • Steve Leu
  • Hsueh-Wen Chang
  • Sheng-Ying Chung
  • Sarah Chua
  • Kuo-Ho Yeh
  • Yung-Lung Chen
  • Hon-Kan Yip
Original Article



Chronic renal failure on dialysis can reduce the number of circulating endothelial progenitor cells (EPCs), but this biomarker has not been fully investigated in patients with chronic kidney disease (CKD). A link between CKD and increased mononuclear cell apoptosis (MCA) in circulation has been reported but the effect of vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1α, two angiogenesis factors, on circulating EPC levels in CKD has not been clarified. This study examined the relationships between the numbers of circulating EPCs and the severity of CKD, degree of MCA and serum levels of VEGF and SDF-1α in CKD patients.


The numbers of circulating EPCs (CD31/CD34+, CD62E/CD34+, KDR/CD34+, CXCR4/CD34+) were measured in 166 patients with varying degrees of CKD under regular treatment at an outpatient department and in 30 volunteer control subjects.


CKD patients had significantly lower numbers of EPCs (p < 0.007), higher MCA in circulation and higher serum levels of VEGF and SDF-1 compared with the control subjects (all p < 0.001). Compared with patients with early CKD (stages I–III), patients with late CKD [stage IV–V or end-stage renal disease (ESRD)] had significantly lower numbers of EPCs (CXCR4/CD34+), higher MCA, and elevated serum levels of VEGF and SDF-1α (all p < 0.01). Serum VEGF level but not MCA or SDF-1α was strongly correlated with increased numbers of circulating EPCs. Multivariate analysis showed that ESRD along with lower serum albumin was independently predictive of lower numbers of circulating EPCs (p < 0.04).


Circulating EPCs were markedly reduced in CKD patients. ESRD was strongly and independently predictive of decreased numbers of circulating EPCs.


Chronic kidney disease Circulating endothelial progenitor cells Angiogenesis factors Cellular apoptosis 


  1. 1.
    Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010;31:703–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.PubMedCrossRefGoogle Scholar
  3. 3.
    Seyfarth M, Kastrati A, Mann JF, Ndrepepa G, Byrne RA, Schulz S, et al. Prognostic value of kidney function in patients with ST-elevation and non–ST-elevation acute myocardial infarction treated with percutaneous coronary intervention. Am J Kidney Dis. 2009;54:830–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Herzog CA, Ma JZ, Collins AJ. Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N Engl J Med. 1998;339:799–805.PubMedCrossRefGoogle Scholar
  5. 5.
    Chertow GM, Normand SL, Silva LR, McNeil BJ. Survival after acute myocardial infarction in patients with end-stage renal disease: results from the cooperative cardiovascular project. Am J Kidney Dis. 2000;35:1044–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Culleton BF, Larson MG, Wilson PW, Evans JC, Parfrey PS, Levy D. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int. 1999;56:2214–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Shlipak MG, Massie BM. The clinical challenge of cardiorenal syndrome. Circulation. 2004;110:1514–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Cross J. Endothelial dysfunction in uremia. Blood Purif. 2002;20:459–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Kawashima S. Malfunction of vascular control in lifestyle-related diseases: endothelial nitric oxide (NO) synthase/NO system in atherosclerosis. J Pharmacol Sci. 2004;96:411–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost. 2006;4:566–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116:85–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Stam F, van Guldener C, Becker A, Dekker JM, Heine RJ, Bouter LM, et al. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J Am Soc Nephrol. 2006;17:537–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Annuk M, Lind L, Linde T, Fellstrom B. Impaired endothelium dependent vasodilatation in renal failure in humans. Nephrol Dial Transplant. 2001;16:302–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Hill JM, Zalos G, Halcox JP. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600.PubMedCrossRefGoogle Scholar
  17. 17.
    Lambiase PD, Edwards RJ, Anthopoulos P, Rahman S, Meng YG, Bucknall CA, et al. Circulating humoral factors and endothelial progenitor cells in patients with differing coronary collateral support. Circulation. 2004;109:2986–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353:999–1007.PubMedCrossRefGoogle Scholar
  19. 19.
    Chironi G, Walch L, Pernollet MG, Gariepy J, Levenson J, Rendu F, et al. Decreased number of circulating CD34+KDR+ cells in asymptomatic subjects with preclinical atherosclerosis. Atherosclerosis. 2007;191:115–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Bahlmann FH, DeGroot K, Duckert T, Niemczyk E, Bahlmann E, Boehm SM, et al. Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int. 2003;64:1648–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Jourde-Chiche N, Dou L, Sabatier F, Calaf R, Cerini C, Robert S, et al. Levels of circulating endothelial progenitor cells are related to uremic toxins and vascular injury in hemodialysis patients. J Thromb Haemost. 2009;7:1576–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Jie KE, Zaikova MA, Bergevoet MW, Westerweel PE, Rastmanesh M, Blankestijn PJ, et al. Endothelial progenitor cells in patients on extracorporeal maintenance dialysis therapy. Nephrol Dial Transplant. 2010;25:1875–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang CH, Verma S, Hsieh IC, Chen YJ, Kuo LT, Yang NI, et al. Enalapril increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. J Mol Cell Cardiol. 2006;41:34–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Imanishi T, Tsujioka H, Akasaka T. Endothelial progenitor cells dysfunction and senescence: contribution to oxidative stress. Curr Cardiol Rev. 2008;4:275–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Shastry S, Ingram AJ, Scholey JW, James LR. Homocysteine induces mesangial cell apoptosis via activation of p38-mitogen-activated protein kinase. Kidney Int. 2007;71:304–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Verzola D, Villaggio B, Procopio V, Gandolfo MT, Gianiorio F, Famà A, et al. Androgen-mediated apoptosis of kidney tubule cells: role of c-Jun amino terminal kinase. Biochem Biophys Res Commun. 2009;387:531–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Sardenberg C, Suassuna P, Andreoli MC, Watanabe R, Dalboni MA, Manfredi SR, et al. Effects of uraemia and dialysis modality on polymorphonuclear cell apoptosis and function. Nephrol Dial Transplant. 2006;21:160–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Tsai TH, Lin YC, Sun CK, Chung SY, Chai HT, Yang CH, et al. Prognostic value of circulating dead monocytes in patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Cardiology. 2010;117:131–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Desouza CV, Hamel FG, Bidasee K, O’Connell K. Role of inflammation and insulin resistance in endothelial progenitor cell dysfunction. Diabetes. 2011;60:1286–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen J, Jin J, Song M, Dong H, Zhao G, Huang L. C-reactive protein down-regulates endothelial nitric oxide synthase expression and promotes apoptosis in endothelial progenitor cells through receptor for advanced glycation end-products. Gene. 2012;496:128–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139:137–47.PubMedGoogle Scholar
  33. 33.
    Yip HK, Chang LT, Chang WN, Lu CH, Liou CW, Lan MY, et al. Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke. Stroke. 2008;39:69–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen CH, Cheng BC, Leu S, Sun CK, Chua S, Yen CH, et al. Circulating level of endothelial progenitor cells in healthy Taiwanese. Acta Cardiol Sin. 2010;26:94–101.Google Scholar
  35. 35.
    Hong F, Tuyama A, Lee TF, Loke J, Agarwal R, Cheng X, et al. Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1α-mediated stellate cell activation. Hepatology. 2009;49:2055–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Zeller M, Korandji C, Guilland JC, Sicard P, Vergely C, Lorgis L, et al. Impact of asymmetric dimethylarginine on mortality after acute myocardial infarction. Arterioscler Thromb Vascular Biol. 2008;28:954–60.CrossRefGoogle Scholar
  37. 37.
    Herzog CA, Littrell K, Arko C, Frederick PD, Blaney M. Clinical characteristics of dialysis patients with acute myocardial infarction in the United States: a collaborative project of the United States Renal Data System and the National Registry of Myocardial Infarction. Circulation. 2007;116:1465–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Chonchol M, Whittle J, Desbien A, Orner MB, Petersen LA, Kressin NR. Chronic kidney disease is associated with angiographic coronary artery disease. Am J Nephrol. 2008;28:354–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Bonello L, De Labriolle A, Roy P, Steinberg DH, Okabe T, Pinto Slottow TL, et al. Impact of optimal medical therapy and revascularization on outcome of patients with chronic kidney disease and on dialysis who presented with acute coronary syndrome. Am J Cardiol. 2008;102:535–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Navaneethan SD, Pansini F, Perkovic V, Manno C, Pellegrini F, Johnson DW, et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. 2009;2:CD007784.Google Scholar
  41. 41.
    Fellstrom BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360:1395–407.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B, Fink NE, et al. Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA. 2004;291:451–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Leavey SF, Strawderman RL, Jones CA, Port FK, Held PJ. Simple nutritional indicators as independent predictors of mortality in hemodialysis patients. Am J Kidney Dis. 1998;31:997–1006.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2012

Authors and Affiliations

  • Yen-Ta Chen
    • 1
  • Ben-Chung Cheng
    • 2
  • Sheung-Fat Ko
    • 3
  • Chih-Hung Chen
    • 4
  • Tzu-Hsien Tsai
    • 5
  • Steve Leu
    • 6
  • Hsueh-Wen Chang
    • 7
  • Sheng-Ying Chung
    • 5
  • Sarah Chua
    • 5
  • Kuo-Ho Yeh
    • 5
  • Yung-Lung Chen
    • 5
  • Hon-Kan Yip
    • 5
  1. 1.Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan, ROC
  2. 2.Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan, ROC
  3. 3.Division of General Radiology, Department of Radiology, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan, ROC
  4. 4.Division of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan, ROC
  5. 5.Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan, ROC
  6. 6.Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan, ROC
  7. 7.Department of Biological SciencesNational Sun Yat-Sen UniversityKaohsiungTaiwan, ROC

Personalised recommendations