Clinical and Experimental Nephrology

, Volume 16, Issue 6, pp 833–842 | Cite as

Development of lymphatic vasculature and morphological characterization in rat kidney

  • Maki Tanabe
  • Akira ShimizuEmail author
  • Yukinari Masuda
  • Mitue Kataoka
  • Arimi Ishikawa
  • Kyoko Wakamatsu
  • Akiko Mii
  • Emiko Fujita
  • Seiichiro Higo
  • Tomohiro Kaneko
  • Hiroshi Kawachi
  • Yuh Fukuda
Original Article



The mechanisms and morphological characteristics of lymphatic vascular development in embryonic kidneys remain uncertain.


We examined the distribution and characteristics of lymphatic vessels in developing rat kidneys using immunostaining for podoplanin, prox-1, Ki-67, type IV collagen (basement membrane: BM), and α-smooth muscle actin (αSMA: pericytes or mural cells). We also examined the expression of VEGF-C.


At embryonic day 17 (E17), podoplanin-positive lymphatic vessels were observed mainly in the kidney hilus. At E20, lymphatic vessels extended further into the developing kidneys along the interlobar vasculature. In 1-day-old pups (P1) to P20, lymphatic vessels appeared around the arcuate arteries and veins of the kidneys, with some reaching the developing cortex via interlobular vessels. In 8-week-old adult rats, lymphatic vessels were extensively distributed around the blood vasculature from the renal hilus to cortex. Only lymphatic capillaries lacking continuous BM and αSMA-positive cells were present within adult kidneys, with none observed in renal medulla. VEGF-C was upregulated in the developing kidneys and expressed mainly in tubules. Importantly, the developing lymphatic vessels were characterized by endothelial cells immunopositive for podoplanin, prox-1, and Ki-67, with no surrounding BM or αSMA-positive cells.


During nephrogenesis, lymphatic vessels extend from the renal hilus into the renal cortex along the renal blood vasculature. Podoplanin, prox-1, Ki-67, type IV collagen, and αSMA immunostaining can detect lymphatic vessels during lymphangiogenesis.


Development Kidney Lymphangiogenesis Podoplanin Prox-1 



This study was mainly performed by Ms. Maki Tanabe during her 3rd year to 6th year as a medical student at Nippon Medical school. Parts of this study were presented at the Kidney Week 2009 of the American Society of Nephrology (San Diego).

Conflict of interest

None declared.


  1. 1.
    Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. 2005;438:946–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Liersch R, Detmar M. Lymphangiogenesis in development and disease. Thromb Haemost. 2007;98:304–10.PubMedGoogle Scholar
  3. 3.
    Bruyère F, Noël A. Lymphangiogenesis: in vitro and in vivo models. FASEB J. 2010;24:8–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140:460–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Matsui K, Nagy-Bojarsky K, Laakkonen P, Krieger S, Mechtler K, Uchida S, et al. Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase P and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J Am Soc Nephrol. 2003;14:1981–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A, et al. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int. 2009;75:828–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Horiguchi A, Ito K, Sumitomo M, Kimura F, Asano T, Hayakawa M. Intratumoral lymphatics and lymphatic invasion are associated with tumor aggressiveness and poor prognosis in renal cell carcinoma. Urology. 2008;71:928–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol. 2004;15:603–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med. 2006;12:230–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamamoto I, Yamaguchi Y, Yamamoto H, Hosoya T, Horita S, Tanabe K, et al. A pathological analysis of lymphatic vessels in early renal allograft. Transplant Proc. 2006;38:3300–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Stuht S, Gwinner W, Franz I, Schwarz A, Jonigk D, Kreipe H, et al. Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am J Transplant. 2007;7:377–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Oka K, Namba Y, Ichimaru N, Moriyama T, Kyo M, Kokado Y, et al. Clinicopathological study of expression of lymphatic vessels in renal allograft biopsy after treatment for acute rejection. Transplant Proc. 2009;41:4154–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Hirakawa S, Detmar M. New insights into the biology and pathology of the cutaneous lymphatic system. J Dermatol Sci. 2004;35:1–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Kato S, Shimoda H, Ji RC, Miura M. Lymphangiogenesis and expression of specific molecules as lymphatic endothelial cell markers. Anat Sci Int. 2006;81:71–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Matsui K, Breitender-Geleff S, Soleiman A, Kowalski H, Kerjaschki D. Podoplanin, a novel 43-kDa membrane protein, controls the shape of podocytes. Nephrol Dial Transplant. 1999;14(Suppl 1):9–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Al-Rawi MA, Mansel RE, Jiang WG. Molecular and cellular mechanisms of lymphangiogenesis. Eur J Surg Oncol. 2005;31:117–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Oliver G, Alitalo K. The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol. 2005;21:457–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Takahashi M, Yoshimoto T, Kubo H. Molecular mechanisms of lymphangiogenesis. Int J Hematol. 2004;80:29–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312:549–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21:154–65.PubMedCrossRefGoogle Scholar
  21. 21.
    Morioka Y, Koike H, Ikezumi Y, Ito Y, Oyanagi A, Gejyo F, et al. Podocyte injuries exacerbate mesangial proliferative glomerulonephritis. Kidney Int. 2001;60:2192–204.PubMedCrossRefGoogle Scholar
  22. 22.
    Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–78.PubMedCrossRefGoogle Scholar
  23. 23.
    Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22:3546–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5:74–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Mäkinen T, Norrmén C, Petrova TV. Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci. 2007;64:1915–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Oliver G, Srinivasan RS. Lymphatic vasculature development: current concepts. Ann N Y Acad Sci. 2008;1131:75–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Maby-El Hajjami H, Petrova TV. Developmental and pathological lymphangiogenesis: from models to human disease. Histochem Cell Biol. 2008;130:1063–78.PubMedCrossRefGoogle Scholar
  28. 28.
    Butler MG, Isogai S, Weinstein BM. Lymphatic development. Birth Defects Res C Embryo Today. 2009;87:222–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Schneider M, Othman-Hassan K, Christ B, Wilting J. Lymphangioblasts in the avian wing bud. Dev Dyn. 1999;216:311–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest. 2005;115:2363–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Schledzewski K, Falkowski M, Moldenhauer G, Metharom P, Kzhyshkowska J, Ganss R, et al. Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol. 2006;209:67–77.PubMedCrossRefGoogle Scholar
  32. 32.
    Wilting J, Aref Y, Huang R, Tomarev SI, Schweigerer L, Christ B, et al. Dual origin of avian lymphatics. Dev Biol. 2006;292:165–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee HW, Qin YX, Kim YM, Park EY, Hwang JS, Huo GH, et al. Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney. Cell Tissue Res. 2011;343:429–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Leak LV, Burke JF. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat. 1966;118:785–809.PubMedCrossRefGoogle Scholar
  35. 35.
    Jeltsch M, Tammela T, Alitalo K, Wilting J. Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res. 2003;314:69–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol. 2011;193:607–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Madsen KM, Nielsen S, Tisher CC. Anatomy of the kidney. In: Brenner BM, editor. Brenner and Rector’s the kidney. 8th ed. Philadelphia: Saunders Elsevier; 2008. p. 25–90.Google Scholar
  38. 38.
    Hong YK, Detmar M. Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res. 2003;314:85–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Oliver G, Srinivasan RS. Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell. Development. 2010;137:363–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Gerdes J. Ki-67 and other proliferation markers useful for immunohistological diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol. 1990;1:199–206.PubMedGoogle Scholar
  41. 41.
    Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 2002;161:947–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest. 2005;115:2316–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Nucera S, Biziato D, De Palma M. The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int J Dev Biol. 2011;55:495–503.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2012

Authors and Affiliations

  • Maki Tanabe
    • 1
  • Akira Shimizu
    • 1
    Email author
  • Yukinari Masuda
    • 1
  • Mitue Kataoka
    • 1
  • Arimi Ishikawa
    • 1
  • Kyoko Wakamatsu
    • 1
  • Akiko Mii
    • 2
  • Emiko Fujita
    • 2
  • Seiichiro Higo
    • 1
  • Tomohiro Kaneko
    • 2
  • Hiroshi Kawachi
    • 3
  • Yuh Fukuda
    • 1
  1. 1.Department of Analytic Human PathologyNippon Medical SchoolTokyoJapan
  2. 2.Division of Neurology, Nephrology and Rheumatology, Department of Internal MedicineNippon Medical SchoolTokyoJapan
  3. 3.Department of Cell Biology, Institute of NephrologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan

Personalised recommendations