Skip to main content

Advertisement

Log in

The effect of renal administration of a selective cyclooxygenase-2 inhibitor or stable prostaglandin I2 analog on the progression of sclerotic glomerulonephritis in rats

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background and methods

There is increasing evidence that a change in glomerular hemodynamics may promote the development of glomerulosclerosis. In this study, we focused on the pharmacological effects of 2 contrasting agents, etodolac, a preferential cyclooxygenase-2 inhibitor, and beraprost sodium (BPS), a prostaglandin I2 analog, delivered renally, on the disease course of progressive anti-Thy-1 (ATS) glomerulonephritis.

Results

Intravital microscopic analysis showed that the diameters of glomerular capillaries and glomerular blood flow in unilaterally nephrectomized (Nx) rats treated locally with BPS were significantly increased, as compared to those of Nx rats treated locally with normal saline (NS) or etodolac. We then examined the effects of BPS and etodolac on the course of progressive glomerulosclerosis. Mesangial cell proliferation, adhesion of glomerular capillary tufts and crescent formation in the BPS-treated group appeared to be more severe compared to the ATS + NS and the ATS + etodolac groups. Scoring of mesangial proliferation and glomerulosclerosis revealed that local BPS treatment significantly worsened glomerular pathology. At day 28, there were significant differences in blood flow between the ATS + etodolac group and both the ATS + NS and ATS + BPS groups, indicating that local treatment with etodolac enhanced the recovery of glomerular circulation.

Conclusion

This study provides hemodynamic-based evidence showing that disturbance of intraglomerular microcirculation is a critical marker for progressive glomerulonephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM. Hyperfiltration in remnant nephron: a potentially adverse response to renal ablation. Am J Physiol. 1981;241:F85–93.

    PubMed  CAS  Google Scholar 

  2. Brenner BM. Remission of renal disease: recounting the challenge, acquiring the goal. J Clin Invest. 2002;110:1753–8.

    PubMed  CAS  Google Scholar 

  3. Wada Y, Morioka T, Oyanagi-Tanaka Y, Yao J, Suzuki Y, Gejyo F, Aakawa M, et al. Impairment of vascular regeneration precedes progressive glomerulosclerosis in anti-Thy-1 glomerulonephritis. Kidney Int. 2002;61:432–43.

    Article  PubMed  CAS  Google Scholar 

  4. Oyanagi-Tanaka Y, Yao J, Wada Y, Morioka T, Suzuki Y, Gejyo F, et al. Real-time observation of hemodynamic changes in glomerular aneurysms induced by anti-Thy-1 antibody. Kidney Int. 2001;59:252–9.

    Article  PubMed  CAS  Google Scholar 

  5. Mahmood J, Khan F, Kumagai N, Morioka T, Oite T. Local delivery of angiotensin receptor blocker into the kidney ameliorates progression of experimental glomerulonephritis. Kidney Int. 2006;70:1591–8.

    Article  PubMed  CAS  Google Scholar 

  6. Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN, Breyer MD. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest. 1994;94:2504–10.

    Article  PubMed  CAS  Google Scholar 

  7. Jensen BL, Kurtz A. Differential regulation of renal cyclooxygenase mRNA by dietary salt intake. Kidney Int. 1997;52:1242–9.

    Article  PubMed  CAS  Google Scholar 

  8. Yang T, Singh I, Pham H, Sun D, Smart A, Schnermann JB, et al. Regulation of cyclooxygenase expression in the kidney by dietary salt intake. Am J Physiol. 1998;274:F481–9.

    PubMed  CAS  Google Scholar 

  9. Wang JL, Cheng HF, Zhang MZ, McKanna JA, Harris RC. Selective increase of cyclooxygenase-2 expression in a model of renal ablation. Am J Physiol. 1998;275:F613–22.

    PubMed  CAS  Google Scholar 

  10. Raij L, Azar S, Keane W. Mesangial immune injury, hypertension, and progressive glomerular damage in Dahl rats. Kidney Int. 1984;26:137–43.

    Article  PubMed  CAS  Google Scholar 

  11. Ikarashi K, Li B, Suwa M, Kawamura K, Morioka T, Yao J, et al. Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney Int. 2005;67:1925–33.

    Article  PubMed  CAS  Google Scholar 

  12. Kawamura K, Okada S, Li B, Suwa M, Yao J, Morioka T, et al. Turbulence of glomerular hemodynamics involved in progressive glomerulosclerosis. Kidney Int. 2006;69:1792–8.

    Article  PubMed  CAS  Google Scholar 

  13. Li B, Yao J, Kawamura K, Oyanagi-Tanaka Y, Hoshiyama M, Morioka T, et al. Real-time observation of glomerular hemodynamic changes in diabetic rats: effects of insulin and ARB. Kidney Int. 2004;66:1939–48.

    Article  PubMed  CAS  Google Scholar 

  14. Harris RC Jr. Cyclooxygenase-2 inhibition and renal physiology. Am J Cardiol. 2002;89(Suppl):10D–7D.

    Article  PubMed  CAS  Google Scholar 

  15. Cipollone F, Cicolini G, Bucci M. Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol Ther. 2008;118:161–80.

    Article  PubMed  CAS  Google Scholar 

  16. Wang JL, Cheng HF, Shappell S, Harris RC. A selective cyclooxygenase-2 inhibitor decreases proteinuria and retards progressive renal injury in rats. Kidney Int. 2000;57:2334–42.

    Article  PubMed  CAS  Google Scholar 

  17. Perazella MA, Eras J. Are selective COX-2 inhibitors nephrotoxic? Am J Kidney Dis. 2000;35:937–40.

    Article  PubMed  CAS  Google Scholar 

  18. Kitahara M, Eitner F, Ostendorf T, Kunter U, Janssen U, Westenfeld R, et al. Selective cyclooxygenase-2 inhibition impairs glomerular capillary healing in experimental glomerulonephritis. J Am Soc Nephrol. 2002;13:1261–70.

    PubMed  CAS  Google Scholar 

  19. Poelstra K, Brouwer E, Baller JFW, Hardonk MJ, Bakker WW. Attenuation of anti-Thy1 glomerulonephritis in the rat by anti-inflammatory platelet-inhibiting agents. Am J Pathol. 1993;142:441–50.

    PubMed  CAS  Google Scholar 

  20. Clark WF, Parbtani A, McDonald JW, Taylor N, Reid BD, Kreeft J. The effects of a thromboxane synthase inhibitor, a prostacyclin analog and PGE1 on the nephritis of the NZB/WF1 mouse. Clin Nephrol. 1987;28:288–94.

    PubMed  CAS  Google Scholar 

  21. Yamashita T, Shikata K, Matsuda M, Okada S, Ogawa D, Sugimoto H, et al. Beraprost sodium, prostacyclin analogue, attenuates glomerular hyperfiltration and glomerular macrophage infiltration by modulating ecNOS expression in diabetic rats. Diabetes Res Clin Pract. 2002;57:149–61.

    Article  PubMed  CAS  Google Scholar 

  22. Yamada M, Sasaki R, Sato N, Suzuki M, Tamura M, Matsushita T, et al. Amelioration by beraprost sodium, a prostacyclin analogue, of established renal dysfunction in rat glomerulonephritis model. Eur J Pharmacol. 2002;449:167–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the Ministry of Education, Science, Sports and Culture, Japan (B: No. 15390266, C: No. 12671032, JSPS; 15/03138, to T.O. Grant-in-aid for young scientists B: No. 17790548 to J.M.), and grants from Novartis Pharmaceuticals and Nippon Shinyaku Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Oite.

About this article

Cite this article

Nozawa, Y., Sato, A., Piao, H. et al. The effect of renal administration of a selective cyclooxygenase-2 inhibitor or stable prostaglandin I2 analog on the progression of sclerotic glomerulonephritis in rats. Clin Exp Nephrol 16, 221–230 (2012). https://doi.org/10.1007/s10157-011-0558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0558-2

Keywords

Navigation