Advertisement

Clinical and Experimental Nephrology

, Volume 16, Issue 1, pp 35–43 | Cite as

Regulation and dysregulation of epithelial Na+ channels

  • Lawrence G. PalmerEmail author
  • Ankit Patel
  • Gustavo Frindt
Review Article The 36th IUPS Satellite Symposium: The Kidney and Hypertension

Abstract

Epithelial Na+ channels (ENaC) form a highly regulated pathway for the reabsorption of Na+ from urine. This regulation can take place at a number of different levels, including synthesis of channel protein, trafficking of the protein between the surface and internal membranes, proteolytic cleavage and channel gating. This article reviews the role of these different modes of regulation under physiological conditions and considers the possible contributions of dysregulation of these processes in disease states, particularly hypertension.

Keywords

Na+ transport ENaC Aldosterone Hypertension 

References

  1. 1.
    Garty H, Palmer LG. Epithelial Na+ channels: function, structure, and regulation. Physiol Rev. 1997;77:359–96.PubMedGoogle Scholar
  2. 2.
    Gatzy JT. Ion transport across excised bullfrog lung. Am J Physiol. 1975;228:1162–71.PubMedGoogle Scholar
  3. 3.
    Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002;82(3):735–67.PubMedGoogle Scholar
  4. 4.
    Rossier BC, Pradervand S, Schild L, Hummler E. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Ann Rev Physiol. 2002;64:877–97.Google Scholar
  5. 5.
    Costanzo LS, Windhager EE. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol. 1978;235(5):F492–506.PubMedGoogle Scholar
  6. 6.
    Loffing J, Zecevic M, Feraille E, Asher C, Rossier BC, Firestone GL, et al. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol. 2001;280:F675–82.Google Scholar
  7. 7.
    Frindt G, Ergonul Z, Palmer LG. Na channel expression and activity in the medullary collecting duct of rat kidney. Am J Physiol Renal Physiol. 2007;292:F1190–6.PubMedGoogle Scholar
  8. 8.
    Pisitkun T, Bieniek J, Tchapyjnikov D, Wang G, Wu WW, Shen RF, et al. High-throughput identification of IMCD proteins using LC-MS/MS. Physiol Genomics. 2006;25(2):263–76.PubMedGoogle Scholar
  9. 9.
    Husted RF, Volk KA, Sigmund RD, Stokes JB. Discordant effects of corticosteroids and expression of subunits on ENaC activity. Am J Physiol Renal Physiol. 2007;293(3):F813–20.PubMedGoogle Scholar
  10. 10.
    Boron WF, Boulpaep EL. Medical physiology. 2nd ed. Philadelphia: Saunders; 2009.Google Scholar
  11. 11.
    Frindt G, Palmer LG. K+ secretion in the rat kidney: Na+ channel-dependent and -independent mechanisms. Am J Physiol Renal Physiol. 2009;297(2):F389–96.PubMedGoogle Scholar
  12. 12.
    Verrey F, Hummler E, Schild L, Rossier B. Control of sodium transport by aldosterone. In: Seldin DW, Giebisch G, editors. The kidney: physiology and pathophysiology. Philadephia: Lippincott Williams and Wilkins; 2000. p. 1441–71.Google Scholar
  13. 13.
    Frindt G, Masilamani S, Knepper MA, Palmer LG. Activation of epithelial Na channels during short-term Na deprivation. Am J Physiol. 2001;280:F112–8.Google Scholar
  14. 14.
    Pácha J, Frindt G, Antonian L, Silver R, Palmer LG. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol. 1993;102:25–42.PubMedGoogle Scholar
  15. 15.
    Palmer LG, Antonian L, Frindt G. Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol. 1994;104:693–710.PubMedGoogle Scholar
  16. 16.
    Frindt G, Palmer LG. Regulation of Na channels in the rat cortical collecting tubule: effects of cAMP and methyl donors. Am J Physiol. 1996;271:F1086–92.PubMedGoogle Scholar
  17. 17.
    Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.PubMedGoogle Scholar
  18. 18.
    Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355(6357):262–5.PubMedGoogle Scholar
  19. 19.
    Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242:583–5.PubMedGoogle Scholar
  20. 20.
    Warnock DG. Liddle syndrome: an autosomal dominant form of human hypertension. Kidney Int. 1998;53:18–24.PubMedGoogle Scholar
  21. 21.
    Pratt JH. Central role for ENaC in development of hypertension. J Am Soc Nephrol. 2005;16(11):3154–9.PubMedGoogle Scholar
  22. 22.
    Edelman IS, Bogoroch R, Porter GA. On the mechanism of action of aldosterone on sodium transport: the role of protein synthesis. Proc Natl Acad Sci USA. 1963;50:1169–77.PubMedGoogle Scholar
  23. 23.
    Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger J-D, et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994;367:463–7.PubMedGoogle Scholar
  24. 24.
    Asher C, Wald H, Rossier BC, Garty H. Aldosterone-induced increase in the abundance of Na+ channel subunits. Am J Physiol. 1996;271:C605–11.PubMedGoogle Scholar
  25. 25.
    Stokes JB, Sigmund RD. Regulation of rENaC mRNA by dietary NaCl and steroids: organ, tissue, and steroid heterogeneity. Am J Physiol. 1998;274(6 Pt 1):C1699–707.PubMedGoogle Scholar
  26. 26.
    Ergonul Z, Frindt G, Palmer LG. Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol Renal Physiol. 2006;291(3):F683–93.PubMedGoogle Scholar
  27. 27.
    Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 1999;104:R19–23.PubMedGoogle Scholar
  28. 28.
    Zeissig S, Bergann T, Fromm A, Bojarski C, Heller F, Guenther U, et al. Altered ENaC expression leads to impaired sodium absorption in the noninflamed intestine in Crohn’s disease. Gastroenterology. 2008;134(5):1436–47.PubMedGoogle Scholar
  29. 29.
    Coric T, Hernandez N, Alvarez de la Rosa D, Shao D, Wang T, Canessa CM. Expression of ENaC and serum- and glucocorticoid-induced kinase 1 in the rat intestinal epithelium. Am J Physiol Gastrointest Liver Physiol. 2004;286(4):G663–70.PubMedGoogle Scholar
  30. 30.
    Sayegh R, Auerbach SD, Li X, Loftus RW, Husted RF, Stokes JB, et al. Glucocorticoid induction of epithelial sodium channel expression in lung and renal epithelia occurs via trans-activation of a hormone response element in the 5’-flanking region of the human epithelial sodium channel alpha subunit gene. J Biol Chem. 1999;274(18):12431–7.PubMedGoogle Scholar
  31. 31.
    Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, Kuhl D, et al. Aldosterone-induced Sgk1 relieves Dot1a–AF9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest. 2007;117:773–83.PubMedGoogle Scholar
  32. 32.
    Husted RF, Sigmund RD, Stokes JB. Mechanisms of inactivation of the action of aldosterone on collecting duct by TGF-beta. Am J Physiol Renal Physiol. 2000;278(3):F425–33.PubMedGoogle Scholar
  33. 33.
    Chang CT, Hung CC, Chen YC, Yen TH, Wu MS, Yang CW, et al. Transforming growth factor-beta1 decreases epithelial sodium channel functionality in renal collecting duct cells via a Smad4-dependent pathway. Nephrol Dial Transplant. 2008;23(4):1126–34.PubMedGoogle Scholar
  34. 34.
    Sakharova OV, Taal MW, Brenner BM. Pathogenesis of diabetic nephropathy: focus on transforming growth factor-beta and connective tissue growth factor. Curr Opin Nephrol Hypertens. 2001;10(6):727–38.PubMedGoogle Scholar
  35. 35.
    Guan Y, Hao C, Cha DR, Rao R, Lu W, Kohan DE, et al. Thiazolidinediones expand body fluid volume through PPAR gamma stimulation of ENaC-mediated renal salt absorption. Nat Med. 2005;11(8):861–6.PubMedGoogle Scholar
  36. 36.
    Vallon V, Hummler E, Rieg T, Pochynyuk O, Bugaj V, Schroth J, et al. Thiazolidinedione-induced fluid retention is independent of collecting duct alphaENaC activity. J Am Soc Nephrol. 2009;20(4):721–9.PubMedGoogle Scholar
  37. 37.
    Hager H, Kwon TH, Vinnikova K, Masilamini S, Brooks H, Frokiaer J, et al. Immunocytochemical and immunoelectron microscopic localization of α, β and γ-ENaC in rat kidney. Am J Physiol. 2001;280:F1093–106.Google Scholar
  38. 38.
    Loffing J, Pietri L, Aregger F, Bloch-Faure M, Ziegler U, Meneton P, et al. Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets. Am J Physiol Renal Physiol. 2000;279(2):F252–8.PubMedGoogle Scholar
  39. 39.
    Frindt G, Ergonul Z, Palmer LG. Surface expression of epithelial Na channel protein in rat kidney. J Gen Physiol. 2008;131:617–27.PubMedGoogle Scholar
  40. 40.
    Alvarez de la Rosa D, Li H, Canessa CM. Effects of aldosterone on biosynthesis, traffic, and functional expression of epithelial sodium channels in A6 cells. J Gen Physiol. 2002;119(5):427–42.PubMedGoogle Scholar
  41. 41.
    Malik B, Yue Q, Yue G, Chen XJ, Price SR, Mitch WE, et al. Role of Nedd4–2 and polyubiquitination in epithelial sodium channel degradation in untransfected renal A6 cells expressing endogenous ENaC subunits. Am J Physiol Renal Physiol. 2005;289(1):F107–16.PubMedGoogle Scholar
  42. 42.
    Weisz OA, Wang JM, Edinger RS, Johnson JP. Non-coordinate regulation of endogenous epithelial sodium channel (ENaC) subunit expression at the apical membrane of A6 cells in response to various transporting conditions. J Biol Chem. 2000;275(51):39886–93.PubMedGoogle Scholar
  43. 43.
    Yu L, Helms MN, Yue Q, Eaton DC. Single-channel analysis of functional epithelial sodium channel (ENaC) stability at the apical membrane of A6 distal kidney cells. Am J Physiol Renal Physiol. 2008;295(5):F1519–27.PubMedGoogle Scholar
  44. 44.
    Malik B, Price SR, Mitch WE, Yue Q, Eaton DC. Regulation of epithelial sodium channels by the ubiquitin-proteasome proteolytic pathway. Am J Physiol Renal Physiol. 2006;290(6):F1285–94.PubMedGoogle Scholar
  45. 45.
    Snyder PM. Minireview: regulation of epithelial Na+ channel trafficking. Endocrinology. 2005;146(12):5079–85.PubMedGoogle Scholar
  46. 46.
    Staub O, Verrey F. Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na+ transport in the distal nephron. J Am Soc Nephrol. 2005;16:3167–74.PubMedGoogle Scholar
  47. 47.
    Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, et al. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA. 1999;96:2514–9.PubMedGoogle Scholar
  48. 48.
    Muller OG, Parnova RG, Centeno G, Rossier BC, Firsov D, Horisberger JD. Mineralocorticoid effects in the kidney: correlation between alphaENaC, GILZ, and Sgk-1 mRNA expression and urinary excretion of Na+ and K+. J Am Soc Nephrol. 2003;14(5):1107–15.PubMedGoogle Scholar
  49. 49.
    Náray-Fejes-Tóth A, Canessa C, Cleaveland G, Aldrich G, Fejes-Tóth G. sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem. 1999;274:16973–8.PubMedGoogle Scholar
  50. 50.
    Debonneville C, Flores S, Kamynina E, Plant PJ, Tauxe C, Thomas MA, et al. Phosphorylation of Nedd4–2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 2001;20:7052–9.PubMedGoogle Scholar
  51. 51.
    Snyder PM, Olson DR, Thomas BC. Serum and glucocorticoid-regulated kinase modulates Nedd4–2-mediated inhibition of the epithelial Na+ channel. J Biol Chem. 2002;277(1):5–8.PubMedGoogle Scholar
  52. 52.
    Fakitsas P, Adam G, Daidie D, van Bemmelen MX, Fouladkou F, Patrignani A, et al. Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation. J Am Soc Nephrol. 2007;18(4):1084–92.PubMedGoogle Scholar
  53. 53.
    Fejes-Tóth G, Frindt G, Náray-Fejes-Tóth A, Palmer LG. Epithelial Na+ channel activation and processing in mice lacking SGK1. Am J Physiol. 2008;294:F1298–305.Google Scholar
  54. 54.
    Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, et al. Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest. 2002;110(9):1263–8.PubMedGoogle Scholar
  55. 55.
    Vallon V, Schroth J, Lang F, Kuhl D, Uchida S. Expression and phosphorylation of the Na+-Cl cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol. 2009;297(3):F704–12.PubMedGoogle Scholar
  56. 56.
    Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: A quantitative approach. Proc Natl Acad Sci USA. 1996;93(26):15370–5.PubMedGoogle Scholar
  57. 57.
    Shimkets RA, Warnock DG, Bositis CM, Williams CN, Hansson JH, Schamelan M, et al. Liddle’s Syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell. 1994;79:407–14.PubMedGoogle Scholar
  58. 58.
    Snyder PM, Price MP, Mcdonald FJ, Adams CM, Volk KA, Zeiher BG, et al. Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell. 1995;83(6):969–78.PubMedGoogle Scholar
  59. 59.
    Dahlmann A, Pradervand S, Hummler E, Rossier BC, Frindt G, Palmer LG. Mineralocorticoid regulation of epithelial Na+ channels is maintained in a mouse model of Liddle’s syndrome. Am J Physiol. 2003;285:F310–8.Google Scholar
  60. 60.
    Bertog M, Cuffe JE, Pradervand S, Hummler E, Hartner A, Porst M, et al. Aldosterone responsiveness of the epithelial sodium channel (ENaC) in colon is increased in a mouse model for Liddle’s syndrome. J Physiol. 2008;586(2):459–75.PubMedGoogle Scholar
  61. 61.
    Kellenberger S, Gautschi I, Rossier BC, Schild L. Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest. 1998;101:2741–50.PubMedGoogle Scholar
  62. 62.
    Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature. 1997;389(6651):607–10.PubMedGoogle Scholar
  63. 63.
    Adachi M, Kitamura K, Miyoshi T, Narikiyo T, Iwashita K, Shiraishi N, et al. Activation of epithelial sodium channels by prostasin in Xenopus oocytes. J Am Soc Nephrol. 2001;12(6):1114–21.PubMedGoogle Scholar
  64. 64.
    Caldwell RA, Boucher RC, Stutts MJ. Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):L813–9.PubMedGoogle Scholar
  65. 65.
    Chraibi A, Vallet V, Firsov D, Hess KS, Horisberger J-D. Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J Gen Physiol. 1998;111:127–38.PubMedGoogle Scholar
  66. 66.
    Harris M, Firsov D, Vuagniaux G, Stutts MJ, Rossier BC. A novel neutrophil elastase inhibitor prevents elastase activation and surface cleavage of the epithelial sodium channel expressed in Xenopus laevis oocytes. J Biol Chem. 2007;282:58–64.PubMedGoogle Scholar
  67. 67.
    Diakov A, Bera K, Mokrushina M, Krueger B, Korbmacher C. Cleavage in the {gamma}-subunit of the epithelial sodium channel (ENaC) plays an important role in the proteolytic activation of near-silent channels. J Physiol. 2008;586(Pt 19):4587–608.PubMedGoogle Scholar
  68. 68.
    Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, et al. Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J Biol Chem. 2003;278(39):37073–82.PubMedGoogle Scholar
  69. 69.
    Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, et al. Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem. 2004;279(18):18111–4.PubMedGoogle Scholar
  70. 70.
    Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, et al. Epithelial Na+ channels are fully activated by furin and prostasin-dependent release of an inhibitory peptide from the gamma subunit. J Biol Chem. 2007;282:6153–60.PubMedGoogle Scholar
  71. 71.
    Carattino MD, Sheng S, Bruns JB, Pilewski JM, Hughey RP, Kleyman TR. The epithelial Na+ channel is inhibited by a peptide derived from proteolytic processing of its alpha subunit. J Biol Chem. 2006;281(27):18901–7.PubMedGoogle Scholar
  72. 72.
    Caldwell RA, Boucher RC, Stutts MJ. Serine protease activation of near-silent epithelial Na+ channels. Am J Physiol Cell Physiol. 2004;286(1):C190–4.PubMedGoogle Scholar
  73. 73.
    Andreasen D, Vuagniaux G, Fowler-Jaeger N, Hummler E, Rossier BC. Activation of epithelial sodium channels by mouse channel activating proteases (mCAP) expressed in Xenopus oocytes requires catalytic activity of mCAP3 and mCAP2 but not mCAP1. J Am Soc Nephrol. 2006;17(4):968–76.PubMedGoogle Scholar
  74. 74.
    Bengrine A, Li J, Hamm LL, Awayda MS. Indirect activation of the epithelial Na+ channel by trypsin. J Biol Chem. 2007;282(37):26884–96.PubMedGoogle Scholar
  75. 75.
    Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009;20(2):299–310.PubMedGoogle Scholar
  76. 76.
    Nesterov V, Dahlmann A, Bertog M, Korbmacher C. Trypsin can activate the epithelial sodium channel (ENaC) in microdissected mouse distal nephron. Am J Physiol Renal Physiol. 2008;295(4):F1052–62.PubMedGoogle Scholar
  77. 77.
    Adebamiro A, Cheng Y, Johnson JP, Bridges RJ. Endogenous protease activation of ENaC: effect of protease inhibition on ENaC single channel properties. J Gen Physiol. 2005;126:339–52.PubMedGoogle Scholar
  78. 78.
    Narikiyo T, Kitamura K, Adachi M, Miyoshi T, Iwashita K, Shiraishi N, et al. Regulation of prostasin by aldosterone in the kidney. J Clin Invest. 2002;109(3):401–8.PubMedGoogle Scholar
  79. 79.
    Liu L, Hering-Smith KS, Schiro FR, Hamm LL. Serine protease activity in m-1 cortical collecting duct cells. Hypertension. 2002;39(4):860–4.PubMedGoogle Scholar
  80. 80.
    Wakida N, Kitamura K, Tuyen DG, Maekawa A, Miyoshi T, Adachi M, et al. Inhibition of prostasin-induced ENaC activities by PN-1 and regulation of PN-1 expression by TGF-beta1 and aldosterone. Kidney Int. 2006;70(8):1432–8.PubMedGoogle Scholar
  81. 81.
    Kaizu T, Margolius HS. Studies on rat renal cortical cell kallikrein. I. Separation and measurement. Biochim Biophys Acta. 1975;411(2):305–15.PubMedGoogle Scholar
  82. 82.
    Margolius HS, Horwitz D, Geller RG, Alexander RW, Gill JR Jr, Pisano JJ, et al. Urinary kallikrein excretion in normal man. Relationships to sodium intake and sodium-retaining steroids. Circ Res. 1974;35(6):812–9.PubMedGoogle Scholar
  83. 83.
    Picard N, Eladari D, El Moghrabi S, Planes C, Bourgeois S, Houillier P, et al. Defective ENaC processing and function in tissue kallikrein-deficient mice. J Biol Chem. 2008;283(8):4602–11.PubMedGoogle Scholar
  84. 84.
    Knight KK, Olson DR, Zhou R, Snyder PM. Liddle’s syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc Natl Acad Sci USA. 2006;103(8):2805–8.PubMedGoogle Scholar
  85. 85.
    Ruffieux-Daidie D, Staub O. Intracellular ubiquitylation of the epithelial Na+ channel controls extracellular proteolytic channel activation via conformational change. J Biol Chem. 2011;286(4):2416–24.PubMedGoogle Scholar
  86. 86.
    Knight KK, Wentzlaff DM, Snyder PM. Intracellular sodium regulates proteolytic activation of the epithelial sodium channel. J Biol Chem. 2008;283(41):27477–82.PubMedGoogle Scholar
  87. 87.
    Passero CJ, Mueller GM, Rondon-Berrios H, Tofovic SP, Hughey RP, Kleyman TR. Plasmin activates epithelial Na+ channels by cleaving the gamma subunit. J Biol Chem. 2008;283(52):36586–91.PubMedGoogle Scholar
  88. 88.
    Kakizoe Y, Kitamura K, Ko T, Wakida N, Maekawa A, Miyoshi T, et al. Aberrant ENaC activation in Dahl salt-sensitive rats. J Hypertens. 2009;27(8):1679–89.PubMedGoogle Scholar
  89. 89.
    Tuyen DG, Kitamura K, Adachi M, Miyoshi T, Wakida N, Nagano J, et al. Inhibition of prostasin expression by TGF-beta1 in renal epithelial cells. Kidney Int. 2005;67(1):193–200.PubMedGoogle Scholar
  90. 90.
    Palmer LG, Frindt G. Gating of Na channels in the rat cortical collecting tubule: Effects of voltage and membrane stretch. J Gen Physiol. 1996;107:35–45.PubMedGoogle Scholar
  91. 91.
    Anantharam A, Tian Y, Palmer LG. Open probability of the epithelial sodium channel is regulated by intracellular sodium. J Physiol. 2006;574(Pt 2):333–47.PubMedGoogle Scholar
  92. 92.
    Chraibi A, Horisberger JD. Na self inhibition of human epithelial Na channel: temperature dependence and effect of extracellular proteases. J Gen Physiol. 2002;120(2):133–45.PubMedGoogle Scholar
  93. 93.
    Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, et al. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol. 2006;291(3):F663–9.PubMedGoogle Scholar
  94. 94.
    Chalfie M. A molecular model for mechanosensation in Caenorhabditis elegans. Biol Bull. 1997;192(1):125.PubMedGoogle Scholar
  95. 95.
    Shi H, Asher C, Chigaev A, Yung Y, Reuveny E, Seger R, et al. Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK-mediated phosphorylation. J Biol Chem. 2002;277(16):13539–47.PubMedGoogle Scholar
  96. 96.
    Shen JP, Cotton CU. Epidermal growth factor inhibits amiloride-sensitive sodium absorption in renal collecting duct cells. Am J Physiol Renal Physiol. 2003;284(1):F57–64.PubMedGoogle Scholar
  97. 97.
    Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D. A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J Biol Chem. 2005;280(48):39970–81.PubMedGoogle Scholar
  98. 98.
    Frank J, Roux J, Kawakatsu H, Su G, Dagenais A, Berthiaume Y, et al. Transforming growth factor-beta1 decreases expression of the epithelial sodium channel alphaENaC and alveolar epithelial vectorial sodium and fluid transport via an ERK1/2-dependent mechanism. J Biol Chem. 2003;278(45):43939–50.PubMedGoogle Scholar
  99. 99.
    Falin RA, Cotton CU. Acute downregulation of ENaC by EGF involves the PY motif and putative ERK phosphorylation site. J Gen Physiol. 2007;130(3):313–28.PubMedGoogle Scholar
  100. 100.
    Michlig S, Harris M, Loffing J, Rossier BC, Firsov D. Progesterone down-regulates the open probability of the amiloride-sensitive epithelial sodium channel via a Nedd4–2-dependent mechanism. J Biol Chem. 2005;280(46):38264–70.PubMedGoogle Scholar
  101. 101.
    Alvarez de la Rosa D, Paunescu TG, Els WJ, Helman SI, Canessa CM. Mechanisms of regulation of epithelial sodium channel by SGK1 in A6 cells. J Gen Physiol. 2004;124(4):395–407.PubMedGoogle Scholar
  102. 102.
    Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC. Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2 and mCAP3) and serum- and glucocorticoid-regkulated kinase (Sgk1) in Xenopus oocytes. J Gen Physiol. 2002;120:191–201.PubMedGoogle Scholar
  103. 103.
    Ma HP, Li L, Zhou ZH, Eaton DC, Warnock DG. ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol. 2002;282:F501–5.Google Scholar
  104. 104.
    Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E, Vallon V, et al. Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J Biol Chem. 2008;283(52):36599–607.PubMedGoogle Scholar
  105. 105.
    Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD. Purinergic control of apical plasma membrane PI(4, 5)P2 levels sets ENaC activity in principal cells. Am J Physiol Renal Physiol. 2008;294(1):F38–46.PubMedGoogle Scholar
  106. 106.
    Wildman SS, Marks J, Turner CM, Yew-Booth L, Peppiatt-Wildman CM, King BF, et al. Sodium-dependent regulation of renal amiloride-sensitive currents by apical P2 receptors. J Am Soc Nephrol. 2008;19(4):731–42.PubMedGoogle Scholar
  107. 107.
    Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA, et al. Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J. 2007;21(13):3717–26.PubMedGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2011

Authors and Affiliations

  • Lawrence G. Palmer
    • 1
    Email author
  • Ankit Patel
    • 1
  • Gustavo Frindt
    • 1
  1. 1.Department of Physiology and BiophysicsWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations