Clinical and Experimental Nephrology

, Volume 14, Issue 6, pp 536–547 | Cite as

High-calorie diet with moderate protein restriction prevents cachexia and ameliorates oxidative stress, inflammation and proteinuria in experimental chronic kidney disease

  • Hyun Ju Kim
  • Nosratola D. Vaziri
  • Keith Norris
  • Won Suk An
  • Yasmir Quiroz
  • Bernardo Rodriguez-IturbeEmail author
Original Article



In earlier studies we found that a high-fat, high-energy diet (HFED) attenuates proteinuria, azotemia and lipid accumulation in the remnant kidney of rats subjected to 5/6 nephrectomy. This study was conducted to explore the mechanism of the salutary effect of HFED in association with moderate protein restriction in this model.


The 5/6 nephrectomized male rats were randomized to receive regular rat chow (CRF group, n = 6) or HFED diet (CRF + HFED, n = 7) for 12 weeks. Sham-operated rats served as controls (n = 6).


The CRF group exhibited azotemia, hypertension, proteinuria, diminished body weight, oxidative stress, glomerulosclerosis, tubulo-interstitial inflammation and upregulation of pro-oxidant [NAD(P)H oxidase], pro-inflammatory (NF-κB activation, increased MCP-1, lipoxygenase, ICAM-1, VCAM-1), pro-fibrotic (TGF-β, CTGF) and pro-apoptotic pathways (Bax, caspase-3) in the remnant kidney. Consumption of the HFED resulted in a 66% increment in lipid intake, 8% increment in carbohydrate intake and a 24% reduction in protein intake. The CRF + HFED group gained weight normally, had increments in leptin and adiponectin levels, and despite increments in plasma cholesterol and fatty acids, showed significant attenuation of oxidative stress, proteinuria and inflammation, and partial reversal of the remnant kidney upregulation of pro-oxidant, pro-inflammatory, pro-fibrotic and pro-apoptotic pathways.


Consumption of high-energy diet in association with mild protein restriction results in suppression of upregulated pathways that drive progression of renal injury in the remnant kidney model. These findings may have relevance in the management of chronic kidney disease in humans.


Dyslipidemia Malnutrition High-calorie diet Chronic renal disease progression Inflammation Uremic cachexia 



This study was in part supported by the NIH Division of Research Resources Grant 5 U54 RR-0119234 and by FONACYT Grant 2005000283.

Conflict of interest



  1. 1.
    Degoulet P, Legrain M, Réach I, Aimé F, Devriés C, Rojas P, et al. Mortality risk factors in patients treated by chronic hemodialysis. Report of the Diaphane collaborative study. Nephron. 1982;31:103–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Leavy SD, Strawderman RL, Jones CA, Port FK, Held PJ. Simple nutritional indicators as independent predictors of mortality in hemodialysis patients. Am J Kidney Dis. 1998;31:997–1006.CrossRefGoogle Scholar
  3. 3.
    Kopple JD, Zhu X, Lew NL, Lowrie EG. Body weight-for-height relationships predict mortality in hemodialysis patients. Kidney Int. 1999;56:1136–48.CrossRefPubMedGoogle Scholar
  4. 4.
    Fleishmann E, Teal N, Dudley J, May W, Bower JD, Salahudeen AK. Influence of excess weight on mortality and hospital stay in 1346 hemodialysis patients. Kidney Int. 1999;55:1560–7.CrossRefGoogle Scholar
  5. 5.
    Leavy SF, McCullough K, Hecking E, Goodkin D, Port FK, Young EW. Body mass index and mortality in “healthier” as compared with “sicker” hemodialysis patients: results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant. 2001;16:2386–94.CrossRefGoogle Scholar
  6. 6.
    Glanton CW, Hypolite IO, Hshieh PB, Agoada LY, Yuan CM, Abott KC. Factors associated with short term survival in obese end stage renal disease patients. Ann Epidemiol. 2003;13:136–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Kalantar-Zadeh K, McAllister CJ, Lehn RS, Lee GH, Nissenson AR, Kopple JD. Effect of malnutrition-inflammation complex syndrome on EPO hyporesponsiveness in maintenance hemodialysis patients. Am J Kidney Dis. 2003;42:761–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Abbott KC, Glanton CW, Trespalacios FC, Oliver DK, Ortiz MI, Agodoa LY, et al. Body mass index, dialysis modality and survival: analysis of the United States Data System Dialysis Morbidity and Mortality Wave II Study. Kidney Int. 2004;65:597–605.CrossRefPubMedGoogle Scholar
  9. 9.
    Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol. 1998;9:S16–23.PubMedGoogle Scholar
  10. 10.
    Zager PG, Nikolic J, Brown RH, Campbell MA, Hunt WC, Peterson D, et al. “U” curve association of blood pressure and mortality in hemodialysis patients. Medical Directors of Dialysis Clinic, Inc. Kidney Int. 1998;54:561–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Nishizawa Y, Shoji T, Ishimura E, Inaba M, Morii H. Paradox of risk factors for cardiovascular mortality in uremia: is a higher cholesterol level better for atherosclerosis in uremia? Am J Kidney Dis. 2001;38:S4–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Kalantar-Zadeh K, Block G, Humphreys MH, McAllister CJ, Kopple JD. A low, rather than a high, total plasma homocysteine is an indicator of poor outcome in hemodialysis patients. J Am Soc Nephrol. 2004;15:442–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Lowrie EJ, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an elevation of death rate differences between facilities. Am J Kidney Dis. 1990;15:458–82.PubMedGoogle Scholar
  14. 14.
    Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular disease risk factors in maintenance dialysis. Kidney Int. 2003;63:793–808.CrossRefPubMedGoogle Scholar
  15. 15.
    Rodriguez-Iturbe B, Quiroz Y, Shahkarami A, Li Z, Vaziri ND. Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat. Kidney Int. 2005;68:1041–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Reddy S, Santanam N, Reddy PP, Rock JA, Murphy AA, Parthasarathy S. Interaction of interceed oxidized regenerated cellulose with macrophages: a potential mechanism by which interceed may prevent adhesions. Am J Obstet Gynecol. 1997;177:1315–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Chade AR, Mushin OP, Zhu X, Rodriguez-Porcel M, Grande JP, Textor SC, et al. Pathways of renal fibrosis and modulation of matrix turnover in experimental hypercholesterolemia. Hypertension. 2005;46:772–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Ruan XZ, Varghese Z, Powis SH, Moorhead JF. Human mesangial cells express inducible macrophage scavenger receptor. Kidney Int. 1999;56:440–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Okamura DM, Lopez-Guisa JM, Koelsch K, Collins S, Eddy AA. Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am J Physiol Renal Physiol. 2007;293:F575–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim H-J, Yuan J, Norris K, Vaziri ND. High calorie diet partially ameliorates dysregulation of intra-renal lipid metabolism in the remnant kidney. J Nutr Biochem. 2009. doi: 10.1016/j.jnutbio.2009.08.006.
  21. 21.
    Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol. 2010;298:F662–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Alvarez V, Quiroz Y, Nava M, Pons H, Rodriguez-Iturbe B. Overload proteinuria is followed by salt-sensitive hypertension caused by renal infiltration of immune cells. Am J Physiol Renal Physiol. 2002;283:F1132–41.PubMedGoogle Scholar
  23. 23.
    Rodriguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. Early and sustained inhibition of Nuclear Factor kappa B prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther. 2005;315:51–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Quiroz Y, Ferrebuz A, Romero F, Vaziri ND, Rodriguez-Iturbe B. Melatonin ameliorates oxidative stress, inflammation, proteinuria and progression of renal damage in rats with renal mass reduction. Am J Physiol Renal Physiol. 2008;294:F336–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Cho K-H, Kim H-J, Rodriguez-Iturbe B, Vaziri ND. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am J Physiol Renal Physiol. 2009;297:F106–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Quiroz Y, Ferrebuz A, Vaziri ND, Rodriguez-Iturbe B. Effect of chronic antioxidant therapy with superoxide dismutase-mimetic drug, tempol, on progression of renal disease in rats with renal mass reduction. Nephron Exp Nephrol. 2009;112:e31–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Fouque D, Aparicio M. Eleven reasons to control the protein intake of patients with chronic kidney disease. Nat Clin Pract Nephrol. 2007;3:383–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Vaziri ND. Molecular mechanisms of lipid dysregulation in nephrotic syndrome. Kidney Int. 2003;63:1964–76.CrossRefPubMedGoogle Scholar
  29. 29.
    Zoccali C, Mallamaci F, Tripepi G, Benedetto FA, Cutrupi S, Parlongo S, et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with endstage renal disease. J Am Soc Nephrol. 2002;13:134–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Zoccali C, Mallamaci F. Adiponectin and renal disease progression: another epidemiologic conundrum. Kidney Int. 2007;71:1195–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Pecoits-Filho R, Lindholm B, Stenvinkel P. The malnutrition, inflammation, and atherosclerosis (MIA) syndrome––the heart of the matter. Nephrol Dial Transplant. 2002;17(Suppl 11):28–31.PubMedGoogle Scholar
  32. 32.
    Díez JJ, Iglesias P, Fernández-Reyes MJ, Aguilera A, Bajo MA, Alvarez-Fidalgo P, et al. Serum concentrations of leptin, adiponectin and resistin, and their relationship with cardiovascular disease in patients with end-stage renal disease. Clin Endocrinol. 2005;62:242–9.CrossRefGoogle Scholar
  33. 33.
    Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptor. Endocr Rev. 2005;26:439–45.CrossRefPubMedGoogle Scholar
  34. 34.
    Johansen KL, Mulligan K, Tai V, Schambelan M. Leptin, body composition and indices of malnutrition in patients in dialysis. J Amer Soc Nephrol. 1998;9:1080–4.Google Scholar
  35. 35.
    Aminzadeh MA, Pahl MV, Barton CH, Vaziri ND. Human uremic plasma stimulates release of leptin and uptake of tumor necrosis factor-α in visceral adipocytes. Nephrol Dial Transplant. 2009;24:3626–31.CrossRefPubMedGoogle Scholar
  36. 36.
    Hung S-C, Tung T-Y, Yang C-S, Tarng D-C. High-calorie supplementation increases serum leptin levels and improves response to rHuEPO in long-term hemodialysis patients. Am J Kidney Dis. 2005;45:1073–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Takeda A, Toda T, Shinohara S, Mogi Y, Matsui N. Factors contributing to higher hematocrit levels in hemodialysis patients not receiving recombinant human erythropoietin. Am J Kidney Dis. 2002;40:104–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Sinuani I, Weissgarten J, Beberashvili I, Rapoport MJ, Sandbank J, Feldman L, et al. The cyclin kinase inhibitor p57kip2 regulates TGF-β-induced compensatory tubular hypertrophy: effect of the immunomodulator AS101. Nephrol Dial Transplant. 2009;24:2328–38.CrossRefPubMedGoogle Scholar
  39. 39.
    Chen M, Narumiya S, Masaki T, Sawamura T. Conserved C-terminal residues within the lectin-like domain of LOX-1 are essential for oxidized low-density-lipoprotein binding. Biochem J. 2001;355:289–96.CrossRefPubMedGoogle Scholar
  40. 40.
    Mita S, Kobayashi N, Yoshida K, Nakano S, Matsuoka H. Cardioprotective mechanisms of Rho-kinase inhibition associated with NOS and oxidative stress-LOX-1 pathway in Dahl salt-sensitive hypertensive rats. J Hypertens. 2005;23:87–96.CrossRefPubMedGoogle Scholar
  41. 41.
    Metha JL, Chen J, Hermonat PL, Romeo F, Novelli G. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res. 2006;69:36–45.CrossRefGoogle Scholar
  42. 42.
    Kim HJ, Moradi H, Yuan J, Norris K, Vaziri ND. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol. 2009;296:F1297–306.CrossRefPubMedGoogle Scholar
  43. 43.
    Tumur Z, Shimizu H, Enomoto A, Miyazaki H, Niwa T. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am J Nephrol. 2010;31:435–41.CrossRefPubMedGoogle Scholar
  44. 44.
    Sinha-Hikim I, Shen R, Paul Lee WN, Crum A, Vaziri ND, Norris KC. Effects of a novel cystine based glutathione precursor on oxidative stress in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2010. doi: 10.1152/ajpcell.00434.2009.
  45. 45.
    Igarashi K, Ueda S, Yoshida K, Kashiwagi K. Polyamines in renal failure. Amino Acids. 2006;31:477–83.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2010

Authors and Affiliations

  • Hyun Ju Kim
    • 1
  • Nosratola D. Vaziri
    • 1
  • Keith Norris
    • 2
  • Won Suk An
    • 1
  • Yasmir Quiroz
    • 3
  • Bernardo Rodriguez-Iturbe
    • 3
    • 4
    Email author
  1. 1.Division of Nephrology and Hypertension, Department of MedicineUniversity of CaliforniaIrvineUSA
  2. 2.Charles Drew UniversityLos AngelesUSA
  3. 3.Centro de Investigaciones Biomédicas, Instituto Venezolano de Investigaciones Científicas (IVIC) ZuliaHospital Universitario and Universidad del ZuliaMaracaiboVenezuela
  4. 4.Servicio de Nefrología, 9°PisoHospital UniversitarioMaracaiboVenezuela

Personalised recommendations