Clinical and Experimental Nephrology

, Volume 12, Issue 3, pp 171–180 | Cite as

A peritoneal-based automated wearable artificial kidney

Review article

Abstract

Work on wearable kidneys has evolved around the technology of hemodialysis or hemofiltration, which call for continuous anticoagulation of the extracoporeal circulation and are encumbered with potential immunologic and non-immunologic complications of continuous blood–artificial membrane interactions. A peritoneal-based automated wearable artificial kidney (AWAK) requires no extracorporeal circulation and is therefore “bloodless.” Because AWAK is designed to continuously regenerate and reuse the spent dialysate in perpetuity, it is also “waterless.” A sorbent-based assembly regenerates both the aqueous and the protein components (AqC and PrC) of the spent dialysate, producing a novel, autologous protein-containing dialysate. The regenerated AqC has the same composition as the commercially available peritoneal dialysate, but contains bicarbonate instead of lactate and has a more physiological pH. The regenerated PrC is recycled back into the peritoneal cavity, thereby ameliorating or eliminating protein loss. Depending on the steady-state protein concentrations that can be achieved (under the condition of continuous dialysate regeneration and recycling), the PrC also has the potential of both augmenting ultrafiltration and mediating the removal of protein-bound toxins. Additional sorbents can be incorporated into AWAK for the removal of middle molecular weight uremic toxins. At a regeneration rate of 4 l/h, AWAK provides a dialysate flow of 96 l/day (8–12 times the current rate). Round-the-clock dialysis and ultrafiltration provide steady-state metabolic-biochemical and fluid balance regulation, thereby eliminating “shocks” of abrupt changes in these parameters that characterize the current dialytic modalities. Dialysis-on-the-go, made possible by AWAK’s “wearability” and automation, frees end-stage renal failure patients from the servitude that is demanded by the current dialytic regimentations.

Keywords

Automated wearable artificial kidney AWAK Peritoneal dialysis 

References

  1. 1.
    Vanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Gura V, Beizai M, Ezon C, Polaschegg HD. Continuous renal replacement therapy for end-stage renal disease. The wearable artificial kidney (WAK). Contrib Nephrol. 2005;149:325–33.PubMedGoogle Scholar
  3. 3.
    Nissenson AR, Ronco C, Pergamit G, Edelstein M, Watts R. The human nephron filter: toward a continuously functioning, implantable artificial nephron system. Blood Purif. 2005;23(4):269–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Saito A, Aung T, Sekiguchi K, et al. Present status and perspectives of bioartificial kidneys. J Artif Organs. 2006;9(3):130–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Lande AJ, Roberts M, Pecker EA. In search of a 24 hrs/day, 7 days/week wearable hemodialyzer. Trans Am Soc Artif Intern Organs. 1977;23:185–90.PubMedGoogle Scholar
  6. 6.
    Yamamoto K, Hiwatari M, Kohori F, Sakai K, Fukuda M, Hiyoshi T. Membrane fouling and dialysate flow pattern in an internal filtration-enhancing dialyzer. J Artif Organs. 2005;8(3):198–205.PubMedCrossRefGoogle Scholar
  7. 7.
    Murisasco A, Reynier JP, Ragon A, et al. Continuous arterio-venous hemofiltration in a wearable device to treat end-stage renal disease. ASAIO Trans. 1986;32(1):567–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Neff MS, Sadjadi S, Slifkin R. A wearable artificial glorerulus. ASAIO Trans. 1979;25:71–3.Google Scholar
  9. 9.
    Lee DBN, Roberts M. A peritoneal-based wearable dialysis system. Continuous dialysis using a protein-containing dialysate In: Agarwal S, ed. Scientific Proceedings, South-Asian Nephrology Congress at New Millennium and International CME-2000. New Delhi, 2000:94–9.Google Scholar
  10. 10.
    Roberts M, Lee DBN. A proposed peritoneal-based wearable artificial kidney. Home Hemodialysis Int. 1999;3:65–7.Google Scholar
  11. 11.
    Roberts M, Lee DBN. Wearable artificial kidneys. A peritoneal-dialysis approach. Dialysis and Transplantation. 2006;36:780–2.CrossRefGoogle Scholar
  12. 12.
    Roberts M, Niu PC, Lee DBN. Regeneration of peritoneal dialysate (PD): a step towards a continuous wearable artificial kidney (CWAK). J Am Soc Nephrol. 1991;2(3):367.Google Scholar
  13. 13.
    Vychytil A, Horl WH. The role of tidal peritoneal dialysis in modern practice: A European perspective. Kidney Int Suppl. 2006(103):S96–103.CrossRefGoogle Scholar
  14. 14.
    Fernando SK, Finkelstein FO. Tidal PD: its role in the current practice of peritoneal dialysis. Kidney Int Suppl 2006(103):S91–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Roberts M, Ash SR, Lee DB. Innovative peritoneal dialysis: flow-thru and dialysate regeneration. ASAIO J. 1999;45(5):372–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Villarroel F. Kinetics of intermittent and continuous peritoneal dialysis. J Dial. 1977;1(4):333–47.PubMedGoogle Scholar
  17. 17.
    Lange K, Treser G, Mangalat J. Automatic continuous high flow rate peritoneal dialysis. Arch Klin Med. 1968;214(3):201–6.PubMedGoogle Scholar
  18. 18.
    Lee DB, Brown DL, Baker LR, Littlejohns DW, Roberts PD. Haematological complications of chlorate poisoning. Br Med J. 1970;2(5700):31–2.PubMedGoogle Scholar
  19. 19.
    Blumenkrantz MJ, Gordon A, Roberts M, Lewin AJ, Pecker EA, Moran JK, Coburn JW, Maxwell MH. Applications of the Redy sorbent system to hemodialysis and peritoneal dialysis. Artif Organs. 1979;3(3):230–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Hansen S. Sorbent dialysis in the third millennium. Nephrol News Issues 2006;20(1):43–5.PubMedGoogle Scholar
  21. 21.
    Capparelli AW, Roberts M, Lee DBN. Towards a wearable artificial kidney for continuous dialysis: ex-vivo sorbent regeneration of filtered peritoneal dialysate during intermittent peritoneal dialysis. J Am Soc Nephr. 1993;4:399A.Google Scholar
  22. 22.
    Hoff CM. In vitro biocompatibility performance of Physioneal. Kidney Int Suppl. 2003(88):S57–74.CrossRefGoogle Scholar
  23. 23.
    Etteldorf JN, Dobbins WT, Summitt RL, Rainwater WT, Fischer RL. Intermittent peritoneal dialysis using 5 per cent albumin in the treatment of salicylate intoxication in children. J Pediatr. 1961;58:226–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Roberts M, Dinovo EC, Yanagawa N, Lee DBN. Can peritoneal proteins be regenerated and reused for binding toxins? J Am Soc Nephrol. 1999;10:228A.Google Scholar
  25. 25.
    Roberts M, Paul W, Yanagawa N, Corry DB, Lee DBN. Peritoneal dialysis of protein-bound toxins: feasibility of regeneration of spent dialysis proteins. Perit Dial Int. 1999;19(Suppl 1):S22.Google Scholar
  26. 26.
    Roberts M, Capparelli AW, Wong C, Lee DBN. Development of a wearable artificial kidney based upon sorbent regeneration of peritoneal dialysate. Perit Dial Int. 1995;15(Suppl 4):S88.Google Scholar
  27. 27.
    Petersen NJ, Carson LA, Favero MS, Marshall JH Jr, Aguero SM. Removal of bacteria and bacterial endotoxin from dialysis fluids by the media in a sorbent cartridge. Trans Am Soc Artif Intern Organs. 1979;25:402–3.PubMedGoogle Scholar
  28. 28.
    Levy E. Method of reducing contaminants in drinking water In: USPaT Office, ed. United States Patent Application Publication. USA, 2003.Google Scholar
  29. 29.
    Karl DW, Magnusson JC, Carr PW, Flickinger MC. Preliminary assessment of removal of pyrogenic lipopolysaccharides with colloidal zirconia adsorbents. Enzyme Microb Technol. 1991;13(9):708–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Sonderstrup J. On bacteriological problems in the REDY dialysis system. Scand J Urol Nephrol 1976(30 Suppl):19–22.Google Scholar
  31. 31.
    Murisasco A, Baz M, Boobes Y, Bertocchio P, el Mehdi M, Durand C, Reynier JP, Ragon A. A continuous hemofiltration system using sorbents for hemofiltrate regeneration. Clin Nephrol. 1986;26(Suppl 1):S53–7.PubMedGoogle Scholar
  32. 32.
    Shapiro WB, Schilb TP, Porush JG. Sorbent recycling of ultrafiltrate in man–a 45-week crossover study. Clin Nephrol. 1986;26(Suppl 1):S47–52.PubMedGoogle Scholar
  33. 33.
    Twardowski ZJ. Short, thrice-weekly hemodialysis is inadequate regardless of small molecule clearance. Int J Artif Organs. 2004;27(6):452–66.PubMedGoogle Scholar
  34. 34.
    Frampton JE, Plosker GL. Icodextrin: a review of its use in peritoneal dialysis. Drugs. 2003;63(19):2079–105.PubMedCrossRefGoogle Scholar
  35. 35.
    Garcia-Lopez E, Lindholm B, Tranaeus A. Biocompatibility of new peritoneal dialysis solutions: clinical experience. Perit Dial Int. 2000;20(Suppl 5):S48–56.PubMedGoogle Scholar
  36. 36.
    Rozenberg R, Magen E, Weissgarten J, Korzets Z. Icodextrin-induced sterile peritonitis: the Israeli experience. Perit Dial Int. 2006;26(3):402–5.PubMedGoogle Scholar
  37. 37.
    Lai KN, Ho SK, Leung J, Tang SC, Chan TM, Li FK. Increased survival of mesothelial cells from the peritoneum in peritoneal dialysis fluid. Cell Biol Int. 2001;25(5):445–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Etteldorf JN, Montalvo JM, Kaplan S, Sheffield JA. Intermittent peritoneal dialysis in the treatment of experimental salicylate intoxication. J Pediatr. 1960;56:1–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Chiu A, Fan ST. MARS in the treatment of liver failure: controversies and evidence. Int J Artif Organs. 2006;29(7):660–7.PubMedGoogle Scholar
  40. 40.
    Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int. 2003;64(6):2238–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Faybik P, Hetz H, Baker A, Bittermann C, Berlakovich G, Werba A, Krenn CG, Steltzer H. Extracorporeal albumin dialysis in patients with Amanita phalloides poisoning. Liver Int. 2003;23(Suppl 3):28–33.PubMedGoogle Scholar
  42. 42.
    Yokoyama K, Ogura Y, Kishimoto M, et al. Blood purification for severe sarin poisoning after the Tokyo subway attack. Jama. 1995;274(5):379.PubMedCrossRefGoogle Scholar
  43. 43.
    Ash SR, Sullivan TA, Carr DJ. Sorbent suspensions vs. sorbent columns for extracorporeal detoxification in hepatic failure. Ther Apher Dial. 2006;10(2):145–53.PubMedCrossRefGoogle Scholar
  44. 44.
    Winchester JF, Amerling R, Harbord N, Capponi V, Ronco C. The potential application of sorbents in peritoneal dialysis. Contrib Nephrol. 2006;150:336–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Tauer A, Zhang X, Schaub TP, Zimmeck T, Niwa T, Passlick-Deetjen J, Pischetsrieder M. Formation of advanced glycation end products during CAPD. Am J Kidney Dis. 2003;41(3 Suppl 1):S57–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Reddingius RE, de Boer AW, Schroder CH, Willems JL, Monnens LA. Increase of the bioavailability of intraperitoneal erythropoietin in children on peritoneal dialysis by administration in small dialysis bags. Perit Dial Int. 1997;17(5):467–70.PubMedGoogle Scholar
  47. 47.
    Schroder CH, Swinkels LM, Reddingius RE, Sweep FG, Willems HL, Monnens LA. Adsorption of erythropoietin and growth hormone to peritoneal dialysis bags and tubing. Perit Dial Int. 2001;21(1):90–2.PubMedGoogle Scholar
  48. 48.
    Schroder CH. The management of anemia in pediatric peritoneal dialysis patients. Guidelines by an ad hoc European committee. Pediatr Nephrol. 2003;18(8):805–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Ghosh S, Sharma A, Talukder G. Zirconium. An abnormal trace element in biology. Biol Trace Elem Res. 1992;35(3):247–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Schroeder HA, Balassa JJ. Abnormal trace metals in man: zirconium. J Chronic Dis. 1966;19(5):573–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1–25.PubMedCrossRefGoogle Scholar
  52. 52.
    Sollazzo V, Palmieri A, Pezzetti F, Bignozzi CA, Argazzi R, Massari L, Brunelli G, Carinci F. Genetic effect of zirconium oxide coating on osteoblast-like cells. J Biomed Mater Res B Appl Biomater 2007.Google Scholar
  53. 53.
    Laden K. Introduction ahd history of antiperspirants and deodorants. In: Laden K, Felger CB, eds. Antiperspirants and deodorants. New York: Marcel Decker, 1988:1–13.Google Scholar
  54. 54.
    Chang PP, Henegbarth EA, Lang LA. Maxillary zirconia implant fixed partial dentures opposing an acrylic resin implant fixed complete denture: a two-year clinical report. J Prosthet Dent. 2007;97(6):321–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Tsukamoto R, Chen S, Asano T, Ogino M, Shoji H, Nakamura T, Clarke IC. Improved wear performance with crosslinked UHMWPE and zirconia implants in knee simulation. Acta Orthop. 2006;77(3):505–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Lappalainen R, Santavirta SS. Potential of coatings in total hip replacement. Clin Orthop Relat Res. 2005(430):72–9.CrossRefGoogle Scholar
  57. 57.
    Schadel A, Thun G, Stork L, Metzler R. Immunodiffusion and immunohistochemical investigations on the reactivity of oxide ceramic middle-ear implants. ORL J Otorhinolaryngol Relat Spec. 1993;55(4):216–21.PubMedGoogle Scholar
  58. 58.
    Odell RA. Sorbent dialysis. In: Nissenson AR, Fine RN, Gentile DE, eds. Clinical dialysis, 2nd edition. Connecticut: Appleton and Lange, 1990:712–9.Google Scholar
  59. 59.
    U.S. Renal Data System, USRDS 2006 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.Google Scholar

Copyright information

© Japanese Society of Nephrology 2008

Authors and Affiliations

  1. 1.Laboratory for Artificial Kidney Innovation and Development (LAKID), Sepulveda Ambulatory Care Center and Nursing HomeVA Greater LA Healthcare System and David Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.EncinoUSA

Personalised recommendations