Clinical and Experimental Nephrology

, Volume 11, Issue 4, pp 269–274 | Cite as

Label-retaining cells in the kidney: origin of regenerating cells after renal ischemia

REVIEW ARTICLE

Abstract

The kidney is capable of regeneration. In response to a variety of insults, renal epithelial tubular cells dedifferentiate into an immature phenotype, proliferate, migrate to the injured area, and redifferentiate into mature polarized epithelial cells. In animal models of acute kidney injury induced by renal ischemia or renal toxins, various growth factors, transcription factors, chemokines, and extracellular matrix components have been demonstrated to be involved in the regeneration process. Recent research has suggested the existence of renal stem/progenitor cells in the kidney and their involvement in renal regeneration. In this review, we will focus on the mechanisms of tubular regeneration after kidney injury, particularly on label-retaining cells actively engaged in this process, and discuss their potential as targets of regenerative therapy for various kidney diseases.

Key words

Label-retaining cell Tubular regeneration Renal stem cell Activin-follistatin system Kidney development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harris, RC, Neilson, EG 2006Toward a unified theory of renal progressionAnnu Rev Med5736580PubMedCrossRefGoogle Scholar
  2. 2.
    Cantley, LG 2005Adult stem cells in the repair of the injured renal tubuleNat Clin Pract Nephrol12232PubMedCrossRefGoogle Scholar
  3. 3.
    van Kooten, C, Daha, MR, Van Es, LA 1999Tubular epithelial cells: a critical cell type in the regulation of renal inflammatory processesExp Nephrol742937PubMedCrossRefGoogle Scholar
  4. 4.
    Bonventre, JV 2003Dedifferentiation and proliferation of surviving epithelial cells in acute renal failureJ Am Soc Nephrol14S5561PubMedCrossRefGoogle Scholar
  5. 5.
    Nigam, S, Lieberthal, W 2000Acute renal failure. III. The role of growth factors in the process of renal regeneration and repairAm J Physiol Renal Physiol279F3F11PubMedGoogle Scholar
  6. 6.
    Lelongt, B, Ronco, P 2003Role of extracellular matrix in kidney development and repairPediatr Nephrol1873142PubMedCrossRefGoogle Scholar
  7. 7.
    Shah, MM, Sampogna, RV, Sakurai, H, Bush, KT, Nigam, SK 2004Branching morphogenesis and kidney diseaseDevelopment131144962PubMedCrossRefGoogle Scholar
  8. 8.
    Maeshima, A, Nojima, Y, Kojima, I 2001The role of the activin-follistatin system in the developmental and regeneration processes of the kidneyCytokine Growth Factor Rev1228998PubMedCrossRefGoogle Scholar
  9. 9.
    Maeshima, A, Zhang, YQ, Nojima, Y, Naruse, T, Kojima, I 2001Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in ratsJ Am Soc Nephrol12168595PubMedGoogle Scholar
  10. 10.
    Maeshima, A, Nojima, Y, Kojima, I 2002Activin A: an autocrine regulator of cell growth and differentiation in renal proximal tubular cellsKidney Int6244654PubMedCrossRefGoogle Scholar
  11. 11.
    Maeshima, A, Maeshima, K, Nojima, Y, Kojima, I 2002Involvement of Pax-2 in the action of activin A on tubular cell regenerationJ Am Soc Nephrol1328509PubMedCrossRefGoogle Scholar
  12. 12.
    Maeshima, A, Vaughn, DA, Choi, Y, Nigam, SK 2006Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian ductDev Biol29547385PubMedCrossRefGoogle Scholar
  13. 13.
    Maeshima, A, Yamashita, S, Maeshima, K, Kojima, I, Nojima, Y 2003Activin A produced by ureteric bud is a differentiation factor for metanephric mesenchymeJ Am Soc Nephrol14152334PubMedCrossRefGoogle Scholar
  14. 14.
    Bush, KT, Sakurai, H, Steer, DL, Leonard, MO, Sampogna, RV, Meyer, TN,  et al. 2004TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric budDev Biol26628598PubMedCrossRefGoogle Scholar
  15. 15.
    Maeshima, A, Shiozaki, S, Tajima, T, Nakazato, Y, Naruse, T, Kojima, I 2000Number of glomeruli is increased in the kidney of transgenic mice expressing the truncated type II activin receptorBiochem Biophys Res Commun2684459PubMedCrossRefGoogle Scholar
  16. 16.
    Maeshima, A, Zhang, YQ, Furukawa, M, Naruse, T, Kojima, I 2000Hepatocyte growth factor induces branching tubulogenesis in MDCK cells by modulating the activin-follistatin systemKidney Int58151122PubMedCrossRefGoogle Scholar
  17. 17.
    Dressler, GR 2006The cellular basis of kidney developmentAnnu Rev Cell Dev Biol2250929PubMedCrossRefGoogle Scholar
  18. 18.
    Alison, MR, Poulsom, R, Forbes, S, Wright, NA 2002An introduction to stem cellsJ Pathol19741923PubMedCrossRefGoogle Scholar
  19. 19.
    Cotsarelis, G, Sun, TT, Lavker, RM 1990Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesisCell61132937PubMedCrossRefGoogle Scholar
  20. 20.
    Cotsarelis, G, Cheng, SZ, Dong, G, Sun, TT, Lavker, RM 1989Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cellsCell572019PubMedCrossRefGoogle Scholar
  21. 21.
    Hong, KU, Reynolds, SD, Giangreco, A, Hurley, CM, Stripp, BR 2001Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletionAm J Respir Cell Mol Biol2467181PubMedGoogle Scholar
  22. 22.
    Borthwick, DW, Shahbazian, M, Krantz, QT, Dorin, JR, Randell, SH 2001Evidence for stem-cell niches in the tracheal epitheliumAm J Respir Cell Mol Biol2466270PubMedGoogle Scholar
  23. 23.
    Duvillie, B, Attali, M, Aiello, V, Quemeneur, E, Scharfmann, R 2003Label-retaining cells in the rat pancreas: location and differentiation potential in vitroDiabetes52203542PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, W, Hara, K, Tian, Q, Zhao, K, Yoshitomi, T 2007Existence of small slow-cycling Langerhans cells in the limbal basal epithelium that express ABCG2Exp Eye Res8462634PubMedCrossRefGoogle Scholar
  25. 25.
    Wei, ZG, Cotsarelis, G, Sun, TT, Lavker, RM 1995Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasisInvest Ophthalmol Vis Sci3623646PubMedGoogle Scholar
  26. 26.
    Claudinot, S, Nicolas, M, Oshima, H, Rochat, A, Barrandon, Y 2005Long-term renewal of hair follicles from clonogenic multipotent stem cellsProc Natl Acad Sci U S A1021467782PubMedCrossRefGoogle Scholar
  27. 27.
    Ohyama, M, Terunuma, A, Tock, CL, Radonovich, MF, Pise-Masison, CA, Hopping, SB,  et al. 2006Characterization and isolation of stem cell-enriched human hair follicle bulge cellsJ Clin Invest11624960PubMedCrossRefGoogle Scholar
  28. 28.
    Urbanek, K, Cesselli, D, Rota, M, Nascimbene, A, De Angelis, A, Hosoda, T,  et al. 2006Stem cell niches in the adult mouse heartProc Natl Acad Sci U S A103922631PubMedCrossRefGoogle Scholar
  29. 29.
    Tumbar, T, Guasch, G, Greco, V, Blanpain, C, Lowry, WE, Rendl, M, Fuchs, E 2004Defining the epithelial stem cell niche in skinScience30335963PubMedCrossRefGoogle Scholar
  30. 30.
    Waikel, RL, Kawachi, Y, Waikel, PA, Wang, XJ, Roop, DR 2001Deregulated expression of c-Myc depletes epidermal stem cellsNat Genet281658PubMedCrossRefGoogle Scholar
  31. 31.
    Tani, H, Morris, RJ, Kaur, P 2000Enrichment for murine keratinocyte stem cells based on cell surface phenotypeProc Natl Acad Sci U S A97109605PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang, HB, Ren, CP, Yang, XY, Wang, L, Li, H, Zhao, M,  et al. 2007Identification of label-retaining cells in nasopharyngeal epithelia and nasopharyngeal carcinoma tissuesHistochem Cell Biol12734754PubMedCrossRefGoogle Scholar
  33. 33.
    Togo, T, Utani, A, Naitoh, M, Ohta, M, Tsuji, Y, Morikawa, N,  et al. 2006Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstructionLab Invest8644557PubMedCrossRefGoogle Scholar
  34. 34.
    Croagh, D, Phillips, WA, Redvers, R, Thomas, RJ, Kaur, P 2007Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markersStem Cells253138PubMedCrossRefGoogle Scholar
  35. 35.
    Chan, RW, Gargett, CE 2006Identification of label-retaining cells in mouse endometriumStem Cells24152938PubMedCrossRefGoogle Scholar
  36. 36.
    Smith, GH 2005Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strandsDevelopment1326817PubMedCrossRefGoogle Scholar
  37. 37.
    Shinin, V, Gayraud-Morel, B, Gomes, D, Tajbakhsh, S 2006Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cellsNat Cell Biol867787PubMedCrossRefGoogle Scholar
  38. 38.
    Maeshima, A, Yamashita, S, Nojima, Y 2003Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidneyJ Am Soc Nephrol14313846PubMedCrossRefGoogle Scholar
  39. 39.
    Knoblich, JA 2001Asymmetric cell division during animal developmentNat Rev Mol Cell Biol21120PubMedCrossRefGoogle Scholar
  40. 40.
    Merok, JR, Lansita, JA, Tunstead, JR, Sherley, JL 2002Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kineticsCancer Res6267915PubMedGoogle Scholar
  41. 41.
    Fujigaki, Y, Goto, T, Sakakima, M, Fukasawa, H, Miyaji, T, Yamamoto, T, Hishida, A 2006Kinetics and characterization of initially regenerating proximal tubules in S3 segment in response to various degrees of acute tubular injuryNephrol Dial Transplant214150PubMedCrossRefGoogle Scholar
  42. 42.
    Oliver, JA, Maarouf, O, Cheema, FH, Martens, TP, Al-Awqati, Q 2004The renal papilla is a niche for adult kidney stem cellsJ Clin Invest114795804PubMedCrossRefGoogle Scholar
  43. 43.
    Vogetseder, A, Karadeniz, A, Kaissling, B, Le Hir, M 2005Tubular cell proliferation in the healthy rat kidneyHistochem Cell Biol12497104PubMedCrossRefGoogle Scholar
  44. 44.
    Neilson, EG 2006Mechanisms of disease: Fibroblasts – a new look at an old problemNat Clin Pract Nephrol21018PubMedCrossRefGoogle Scholar
  45. 45.
    Yamashita, S, Maeshima, A, Nojima, Y 2005Involvement of renal progenitor tubular cells in epithelial-to-mesenchymal transition in fibrotic rat kidneysJ Am Soc Nephrol16204451PubMedCrossRefGoogle Scholar
  46. 46.
    Mozdziak, PE, Pulvermacher, PM, Schultz, E, Schell, K 2000Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cellsCytometry418995PubMedCrossRefGoogle Scholar
  47. 47.
    Maeshima, A, Sakurai, H, Nigam, SK 2006Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidneyJ Am Soc Nephrol1718898PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2007

Authors and Affiliations

  1. 1.Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineMaebashiJapan

Personalised recommendations