Advertisement

Clinical and Experimental Nephrology

, Volume 9, Issue 3, pp 195–205 | Cite as

Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease

  • Atsushi Enomoto
  • Hitoshi EndouEmail author
REVIEW ARTICLE

Abstract

Renal proximal and distal tubules are highly polarized epithelial cells that carry out the specialized directional transport of various solutes. This renal function, which is essential for homeostasis in the body, is achieved through the close pairing of apical and basolateral carriers expressed in the renal epithelial cells. The family of organic anion transporters (OATs), which belong to the major facilitator superfamily (SLC22A), are expressed in the renal epithelial cells to regulate the excretion and reabsorption of endogenous and exogenous organic anions. We now understand that these OATs are crucial components in the renal handling of drugs and their metabolites, and they are implicated in various clinically important drug interactions, and their adverse reactions. In recent years, the molecular entities of these transporters have been identified, and their function and regulatory mechanisms have been partially clarified. Workers in this field have identified URAT1 (urate transporter 1), a novel member of the OAT family that displays unique and selective substrate specificity compared with other multispecific OATs. In the OAT family, URAT1 is the main transporster responsible for human genetic diseases. In this review, we introduce and discuss some novel aspects of OATs, with special emphasis on URAT1, in the context of their biological significance, functional regulation, and roles in human disease.

Key words

Organic anion transporter Urate (uric acid) Urate transporter Organic cation transporter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sekine, T, Cha, SH, Endou, H 2000The multispecific organic anion transporter (OAT) familyPflügers Arch44033750CrossRefPubMedGoogle Scholar
  2. 2.
    Bruckhardt, BC, Bruckhardt, G 2003Transport of organic anions across the basolateral membrane of proximal tubule cellsRev Physiol Biochem Pharmacol14695158PubMedGoogle Scholar
  3. 3.
    Sweet, DH, Bush, KT, Nigam, SK 2001The organic anion transporter family: from physiology to ontogeny and the clinicAm J Physiol281F197205Google Scholar
  4. 4.
    Koepsell, H, Endou, H 2004The SLC22 drug transporter familyPflügers Arch44766676CrossRefPubMedGoogle Scholar
  5. 5.
    Hediger, MA, Romero, MF, Peng, JB, Rolfs, A, Takanaga, H, Bruford, EA 2004The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsPflügers Arch4474658CrossRefPubMedGoogle Scholar
  6. 6.
    Sekine, T, Watanabe, N, Hosoyamada, M, Kanai, Y, Endou, H 1997Expression cloning and characterization of a novel multispecific organic anion transporterJ Biol Chem272185269CrossRefPubMedGoogle Scholar
  7. 7.
    Sweet, DH, Wolff, NA, Pritchard, JB 1997Expression cloning and characterization of ROAT1, the basolateral organic anion transporter in rat kidneyJ Biol Chem2723008895CrossRefPubMedGoogle Scholar
  8. 8.
    Reid, G, Wolff, NA, Dautzenberg, FM, Burckhardt, G 1998Cloning of a human renal p-aminohippurate transporter, hROAT1Kidney Blood Press Res212337CrossRefPubMedGoogle Scholar
  9. 9.
    Hosoyamada, M, Sekine, T, Kanai, Y, Endou, H 1999Molecular cloning and functional expression of a multispecific organic anion transporter from human kidneyAm J Physiol Renal Physiol276F1228Google Scholar
  10. 10.
    Sekine, T, Cha, SH, Tsuda, M, Apiwattanakul, N, Nakajima, N, Kanai, Y,  et al. 1998Indentification of multispecific organic anion transporter 2 expressed predominantly in the liverFEBS Lett42917982CrossRefPubMedGoogle Scholar
  11. 11.
    Enomoto, A, Takeda, M, Shimoda, M, Narikawa, S, Kobayashi, Y, Kobayashi, Y,  et al. 2002Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitorsJ Pharmacol Exp Ther301797802CrossRefPubMedGoogle Scholar
  12. 12.
    Kusuhara, H, Sekine, T, Utsunomiya-Tate, N, Tsuda, M, Kojima, R, Cha, SH,  et al. 1999Molecular cloning and characterization of a new multispecifc organic anion transporter from rat brainJ Biol Chem2741367580CrossRefPubMedGoogle Scholar
  13. 13.
    Cha, SH, Sekine, T, Fukushima, JI, Kanai, Y, Kobayashi, Y, Goya, T,  et al. 2001Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidneyMol Pharmacol59127786PubMedGoogle Scholar
  14. 14.
    Cha, SH, Sekine, T, Kusuhara, H, Yu, E, Kim, JY, Kim, DK,  et al. 2000Molecular cloning and characterization of multispecifc organic anion transporter 4 expressed in the placentaJ Biol Chemsx275450712CrossRefGoogle Scholar
  15. 15.
    Sica, DA, Schoolwerth, AC 2000Renal handling of organic anions and cations: Excretion of uric acidBrenner, BM eds. The kidney6th ed.WB SaundersPhiladelphia680700Google Scholar
  16. 16.
    Sweet, DH, Miller, DS, Pritchard, JB, Fujiwara, Y, Beier, DR, Nigam, SK 2002Impaired organic anion transport in kidney and choroids plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout miceJ Biol Chem2772693443CrossRefPubMedGoogle Scholar
  17. 17.
    Enomoto, A, Kimura, H, Chairoungdua, A, Shigeta, Y, Jutabha, P, Cha, SH,  et al. 2002Molecular identification of a renal urate anion exchanger that regulates blood urate levelsNature41744752PubMedGoogle Scholar
  18. 18.
    Wu, X, Lee, CC, Muzny, DM, Caskey, CT 1989Urate oxidase: primary structure and evolutionary implicationsProc Natl Acad Sci USA8694126PubMedGoogle Scholar
  19. 19.
    Wu, X, Muzny, DM, Lee, CC, Caskey, CT 1992Two independent mutational events in the loss of urate oxidaseJ Mol Evol347884CrossRefPubMedGoogle Scholar
  20. 20.
    Berlinger, RW, Hilton, JG, Yü, TF, Kennedy, TJ,Jr 1950The renal mechanism for urate excretion in manJ Clin Invest9396401Google Scholar
  21. 21.
    Maesaka, JK, Fishbane, S 1998Regulation of renal urate excretion: a critical reviewAm J Kidney Dis3291733PubMedGoogle Scholar
  22. 22.
    Abramson, RG, Lipkowitz, MS 1990Evolution of the uric acid transport mechanisms in vertebrate kidneyKinne, RKH eds. Basic principles in transport. Comparative Physiology, Vol. 3KargerBasel11553Google Scholar
  23. 23.
    International Human Genome Sequencing Consortium2001Initial sequencing and analysis of the human genomeNature409860921Google Scholar
  24. 24.
    Nakashima, M, Uematsu, T, Kosuge, K, Kanamaru, M 1992Pilot study of the uricosuric effects of DuP-753, a new angiotensin II receptor antagonist, in healthy subjectsEur J Clin Pharmacol423335CrossRefPubMedGoogle Scholar
  25. 25.
    Roch-Ramel, F, Werner, D, Guisan, B 1994Urate transport in brush-border membrane of human kidneyAm J Physiol266F797F805PubMedGoogle Scholar
  26. 26.
    Steele, TH 1976Urate secretion in man: the pyrazinamide suppression testAnn Intern Med797347Google Scholar
  27. 27.
    Cullen, JH, LeVine, M, Fiore, JM 1957Studies of hyperuricemia produced by pyrazinamideAm J Med2358795CrossRefPubMedGoogle Scholar
  28. 28.
    Kikuchi, Y, Koga, H, Yasutomo, Y, Kawabata, Y, Shimizu, E, Naruse, M,  et al. 2000Patients with renal hypouricemia with exercise-induced acute renal failure and chronic renal dysfunctionClin Nephrol5346772PubMedGoogle Scholar
  29. 29.
    Igarashi, T, Sekine, T, Sugimura, H, Hayakawa, H, Arayama, T 1993Acute renal failure after exercise in a child with renal hypouricemiaPediatr Nephrol72923CrossRefPubMedGoogle Scholar
  30. 30.
    Ishikawa, I, Sakurai, Y, Masuzaki, S, Sugishita, N, Shinoda, A, Shikura, N 1990Exercise-induced acute renal failure in 3 patients with renal hypouricemiaNippon Jinzo Gakkai Shi329238PubMedGoogle Scholar
  31. 31.
    Murakami, T, Kawakami, H, Fukuda, M, Shiigi, H 1993Recurrence of acute renal failure and renal hypouricemiaPediatr Nephrol77723CrossRefPubMedGoogle Scholar
  32. 32.
    Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMGoogle Scholar
  33. 33.
    Yeun, JY, Hasbargen, JA 1995Renal hypouricemia: prevention of exercise-induced acute renal failure and a review of the literatureAm J Kidney Dis2593746PubMedGoogle Scholar
  34. 34.
    Hisatome, I, Ogino, K, Saito, M, Miyamoto, J, Hasegawa, J, Kotake, H,  et al. 1988Renal hypouricemia due to an isolated renal defect of urate transportNephron49813PubMedGoogle Scholar
  35. 35.
    Shichiri, M, Matsuda, O, Shiigai, T, Takeuchi, J, Kanayama, M 1982Renal tubular hypouricemia: evidence for defect of both secretion and reabsorptionArch Intern Med14218557CrossRefPubMedGoogle Scholar
  36. 36.
    Hisatome, I, Ogino, K, Kotake, H, Ishiko, R, Saito, M, Hasegawa, J,  et al. 1989Cause of persistent hypouricemia in outpatientsNephron51136PubMedGoogle Scholar
  37. 37.
    Ishikawa, I 2002Acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise in patients with or without renal hypouricemiaNephron9155970CrossRefPubMedGoogle Scholar
  38. 38.
    Komoda, F, Sekine, T, Inatomi, J, Enomoto, A, Endou, H, Ota, T,  et al. 2004The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemiaPediatr Nephrol1972833CrossRefPubMedGoogle Scholar
  39. 39.
    Tanaka, M, Itoh, K, Matsushita, K, Matsushita, K, Wakita, N, Adachi, M,  et al. 2003Two male siblings with hereditary renal hypouricemia and exercise-induced ARFAm J Kidney Dis42128792CrossRefPubMedGoogle Scholar
  40. 40.
    Ichida, K, Hosoyamada, M, Hisatome, I, Enomoto, A, Hikita, M, Endou, H,  et al. 2004Clinical and molecular analysis of patients with renal hypouricemia in Japan: influence of URAT1 gene on urinary urate excretionJ Am Soc Nephrol1516473CrossRefPubMedGoogle Scholar
  41. 41.
    Halabe, A, Sperling, O 1994Uric acid nephrolithiasisMiner Electrolyte Metab2042431PubMedGoogle Scholar
  42. 42.
    Sweet, DH, Pritchard, JB 1999The molecular biology of renal organic anion and organic cation transportersCell Biochem Biophys3189118CrossRefPubMedGoogle Scholar
  43. 43.
    Sauvant, C, Holzinger, H, Gekle, M 2001Modulation of the basolateral and apical step of transepithelial organic anion secretion in proximal tubular opossum kidney cellsJ Biol Chem27614695703CrossRefPubMedGoogle Scholar
  44. 44.
    You, G, Kuze, K, Kohanski, RA, Amsler, K, Henderson, S 2000Regulation of mOAT-mediated organic anion transport by ocadaic acid and protein kinase C in LLC-PK1 cellsJ Biol Chem2751027884CrossRefPubMedGoogle Scholar
  45. 45.
    Hung, AY, Sheng, M 2002PDZ domains: structural modules for protein complex assemblyJ Biol Chem2775699702CrossRefPubMedGoogle Scholar
  46. 46.
    Anzai N, Miyazaki H, Noshiro R, Khamdang S, Chairoungdua A, Shin HJ, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate–anion exchanger URAT1 via its C-terminal. J Biol Chem 2004; in pressGoogle Scholar
  47. 47.
    Kocher, O, Comella, N, Tognazzi, K, Brown, LF 1998Identification and partial characterization of PDZK1: a novel protein containing PDZ interaction domainsLab Invest7811725PubMedGoogle Scholar
  48. 48.
    Gisler, SM, Pribanic, S, Bacic, D, Forrer, P, Gantenbein, A, Sabourin, LA,  et al. 2003PDZK1. I. A major scaffolder in brush borders of proximal tubular cellsKidney Int64173345CrossRefPubMedGoogle Scholar
  49. 49.
    Wang, S, Yue, H, Derin, RB, Guggino, WB, Li, M 2000Accessory protein facilitated CFTR–CFTR interaction: a molecular mechanism to potentiate the chloride channel activityCell10316979CrossRefPubMedGoogle Scholar
  50. 50.
    Hosoyamada, M, Ichida, K, Enomoto, A, Hosoya, T, Endou, H 2004Function and localization of urate transporter 1 in mouse kidneyJ Am Soc Nephrol152618CrossRefPubMedGoogle Scholar
  51. 51.
    Kang, DH, Nakagawa, T, Feng, L, Watanabe, S, Han, L, Mazzali, M,  et al. 2002A role of uric acid in the progression of renal diseaseJ Am Soc Nephrol13288897CrossRefPubMedGoogle Scholar
  52. 52.
    Johnson, RJ, Kang, DH, Feig, D, Kivlighn, S, Kanellis, J, Watanabe, S,  et al. 2003Is there a pathogenic role for uric acid in hypertension and cardiovascular and renal disease?Hypertension41118390CrossRefPubMedGoogle Scholar
  53. 53.
    Aruoma, OI, Halliwell, B 1989Inactivation of alpha 1-antiproteinase by hydroxyl radicals. The effect of uric acidFEBS Lett2447680CrossRefPubMedGoogle Scholar
  54. 54.
    Kaur, H, Halliwell, B 1990Action of biologically relevant oxidizing species upon urate. Identification of urate oxidation productsChem Biol Interact7323547CrossRefPubMedGoogle Scholar
  55. 55.
    Scott, GS, Spitsin, SV, Kean, RB, Mikheeva, T, Koprowski, H, Hooper, DC 2002Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursorsProc Natl Acad Sci USA99163038CrossRefPubMedGoogle Scholar
  56. 56.
    Hooper, DC, Spitsin, S, Kean, RB, Champion, JM, Dickson, GM, Chaudhry, I,  et al. 1998Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosisProc Natl Acad Sci USA9567580CrossRefPubMedGoogle Scholar
  57. 57.
    Spitsin, SV, Scott, GS, Mikheeva, T, Zborek, A, Kean, RB, Brimer, CM,  et al. 2002Comparison of uric acid and ascorbic acid in protection against EAEFree Radic Biol Med33136371CrossRefPubMedGoogle Scholar
  58. 58.
    Hellsten, Y, Tullson, PC, Richter, EA, Bangsbo, J 1997Oxidation of urate in human skeletal muscle during exerciseFree Radic Biol Med2216974CrossRefPubMedGoogle Scholar
  59. 59.
    Shi, Y, Evans, J, Rock, KL 2003Molecular identification of a danger signal that alerts the immune system to dying cellsNature42551621Google Scholar
  60. 60.
    Cutler, RG 1991Antioxidants and agingAm J Clin Nutr53373S379SPubMedGoogle Scholar
  61. 61.
    Hediger, MA 2002Gateway to a long life?Nature4173935CrossRefPubMedGoogle Scholar
  62. 62.
    Enomoto, A, Takeda, M, Tojo, A, Sekine, T, Cha, SH, Khamdang, S,  et al. 2002Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicityJ Am Soc Nephrol13171120CrossRefPubMedGoogle Scholar
  63. 63.
    Aoyama, I, Niwa, T 2001Molecular insights into preventive effects of AST-120 on the progression of renal failureClin Exp Nephrol520916CrossRefGoogle Scholar
  64. 64.
    Niwa, T, Ise, M 1994Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosisJ Lab Clin Med12496104PubMedGoogle Scholar
  65. 65.
    Niwa, T, Nomura, T, Sugiyama, S, Miyazaki, T, Tsukushi, S, Tsutsui, S 1997The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients52 Suppl62S238Google Scholar
  66. 66.
    Miyazaki, T, Ise, M, Seo, H, Niwa, T 1997Indoxyl sulfate increases the gene expression of TGF-β1, TIMP-1 and pro-α(I) collagen in uremic rat kidneysKidney Int52S1522Google Scholar
  67. 67.
    Deguchi, T, Kusuhara, H, Takadate, A, Endou, H, Otagiri, M, Sugiyama, Y 2004Characterization of uremic toxin transport by organic anion transporters in the kidneyKidney Int6516274CrossRefPubMedGoogle Scholar
  68. 68.
    Eraly, SA, Blantz, RC, Bhatnagar, V, Nigam, SK 2003Novel aspects of renal organic anion transportersCurr Opin Nephrol Hypertens125518PubMedGoogle Scholar
  69. 69.
    Nezu, JI, Tamai, I, Oku, A, Ohashi, R, Yabuuchi, H, Hoshimoto, N,  et al. 1999Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporterNat Genet21914CrossRefPubMedGoogle Scholar
  70. 70.
    Tokuhiro, S, Yamada, R, Chang, X, Suzuki, A, Kochi, Y, Sawada, T 2003An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritisNat Genet353418CrossRefPubMedGoogle Scholar
  71. 71.
    Peltekova, VD, Wintle, RF, Rubin, LA, Amos, CI, Huang, Q, Gu, X,  et al. 2004Functional variants of OCTN cation transporter genes are associated with Crohn diseaseNat Genet364715CrossRefPubMedGoogle Scholar
  72. 72.
    Enomoto, A, Wempe, MF, Tsuchida, H, Shin, HJ, Cha, SH, Anzai, N,  et al. 2002Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognitionJ Biol Chem2773626271CrossRefPubMedGoogle Scholar
  73. 73.
    Jeulin, C, Lewin, LM 1996Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoaHum Reprod Update287102CrossRefPubMedGoogle Scholar
  74. 74.
    Bakhiya, N, Bahn, A, Burckhardt, G, Wolff, NA 2003Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate effluxCell Physiol Biochem1324956CrossRefPubMedGoogle Scholar
  75. 75.
    Ekaratanawong, S, Anzai, N, Jutabha, P, Miyazaki, H, Noshiro, R, Takeda, M,  et al. 2004Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubulesJ Pharmacol Sci94297304CrossRefPubMedGoogle Scholar
  76. 76.
    Ichida, K, Hosoyamada, M, Kimura, H, Takeda, M, Utsunomiya, Y, Hosoya, T,  et al. 2003Urate transport via human PAH transporter hOAT1 and its gene structureKidney Int6314355CrossRefPubMedGoogle Scholar
  77. 77.
    Lipkowitz, MS, Leal-Pinto, E, Rappoport, JZ, Najfeld, V, Abramson, RG 2001Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporterJ Clin Invest107110315PubMedGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2005

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyKyorin University School of MedicineTokyoJapan
  2. 2.Department of Pathology and Department of Clinical Preventive MedicineNagoya University School of MedicineNagoyaJapan

Personalised recommendations