Journal of Infection and Chemotherapy

, Volume 17, Issue 1, pp 45–51

Linezolid-resistant Staphylococcus aureus isolated from 2006 through 2008 at six hospitals in Japan

  • Yurika Ikeda-Dantsuji
  • Hideaki Hanaki
  • Fuminori Sakai
  • Kazunori Tomono
  • Yoshio Takesue
  • Junichi Honda
  • Yuriko Nonomiya
  • Akira Suwabe
  • Osanori Nagura
  • Katsunori Yanagihara
  • Hiroshige Mikamo
  • Kunihiko Fukuchi
  • Mitsuo Kaku
  • Shigeru Kohno
  • Chie Yanagisawa
  • Taiji Nakae
  • Koichiro Yoshida
  • Yoshihito Niki
Original Article

Abstract

Limited use of linezolid for treating methicillin-resistant Staphylococcus aureus (MRSA) infection was approved in Japan in 2006. We report here the status of linezolid-resistant MRSAs in Japan. Eleven linezolid-resistant clinical isolates from 11 patients at six hospitals were collected from 2006 through 2008. The minimal inhibitory concentration (MIC) of linezolid in these strains varied from 8 to 64 μg/ml. All strains had at least one G2576T mutation in the chromosomal gene(s) encoding domain V of the 23S ribosomal RNA (rRNA). Chromosomal DNA encoding five copies of the domain V region was analyzed by polymerase chain reaction (PCR). Strains with the linezolid MICs of 64, 32, 16, and 8 μg/ml had the G2576T mutation(s) in four, three (or four), two, and one copy of the 23S rRNA genes, respectively. These results suggest that the level of linezolid resistance seems to be roughly correlated with the number of mutations in the genes encoding 23S rRNA. DNA samples from all 11 strains were subjected to pulsed-field gel electrophoresis and were classified into seven independent clones having >92% identity. Among the 11 patients, five had been treated with linezolid and the remainder, in two hospitals, had no history of prior linezolid use. The results suggested possible nosocomial infections by linezolid-resistant MRSA.

Keywords

Linezolid Resistance rRNA gene MRSA Nosocomial infection 

References

  1. 1.
    Bozdogan B, Appelbaum PC. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int J Antimicrob Agents. 2004;23:113–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Shinabarger D. Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin Investig Drugs. 1999;8:1195–202.CrossRefPubMedGoogle Scholar
  3. 3.
    Tsiodras S, Gold HS, Sakoulas G, Eliopoulos M, Wennersten C, Venkataraman L, et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet. 2001;3358:207–8.CrossRefGoogle Scholar
  4. 4.
    Hentschke M, Saager B, Horstkotte MA, Sherpe S, Wolters M, Farrel DJ, et al. Emergence of linezolid resistance in a methicillin resistant Staphylococcus aureus strain. Infection. 2008;36:85–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Meka VG, Gold HS. Antimicrobial resistance to linezolid. Clin Infect Dis. 2004;39:1010–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Meka VG, Pillai SK, Sakoulas G, Wennersten C, Venkataraman L, DeGirolami PC, et al. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis. 2004;190:311–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Wilson P, Andrew JA, Charlesworth R, Walesby R, Singer M, Farrel DJ, et al. Linezolid resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother. 2003;51:186–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaatz GW, Seo SM. In vitro activities of oxazolidinone compounds U100592 and U100766 against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 1996;40:799–801.PubMedGoogle Scholar
  9. 9.
    Pillai SK, Sakoulas G, Wennersten C, Eliopoulos M, Moellering RC Jr, Ferraro MJ, et al. Linezolid resistance in Staphylococcus aureus: characterization and stability, of resistant phenotype. J Infect Dis. 2002;186:1603–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Arias CA, Vallejo M, Reyes J, Panesso D, Moreno J, Castaneda E, et al. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase. J Clin Microbiol. 2008;46:892–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Locke JB, Hilgers M, Shaw KJ. Novel ribosomal mutations in Staphylococcus aureus identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother. 2009;53:5265–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Wolter N, Smith AM, Farrel DJ, Schaffner W, Moore M, Whitney CG, et al. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother. 2005;49:3354–7.Google Scholar
  13. 13.
    Wada A, Ohta H, Kulthanan K, Hiramatsu K. Molecular cloning and mapping of 16S–23S rRNA gene complexes of Staphylococcus aureus. J Bacteriol. 1993;175:7483–7.PubMedGoogle Scholar
  14. 14.
    Besier S, Ludwig A, Zander J, Brade V, Wichelhaus TA. Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability, fitness costs, and cross-resistances. Antimicrob Agents Chemother. 2008;52:1570–2.CrossRefPubMedGoogle Scholar
  15. 15.
    Yoshida K, Shoji H, Hanaki H, Yanagisawa C, Ikeda-Dantsuji Y, Fukuchi K, et al. Linezolid-resistant methicillin-resistant Staphylococcus aureus isolated after long-term, repeated use of linezolid. J Infect Chemother. 2009;15:417–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Laboratory Clinical Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 7th ed. Wayne: CLSI; 2006.Google Scholar
  17. 17.
    Bannerman TL, Hancock GA, Tenover FC, Miller JM. Pulsed field gel electrophoresis as a replacement for bacteriophage typing of Staphylococcus aureus. J Clin Microbiol. 1995;33:551–5.PubMedGoogle Scholar
  18. 18.
    Hososaka Y, Hanaki H, Yanagasawa C, Matsui H, Nakae T, Sunakawa K. Nosocomial infection of ß-lactam antibiotic-induced vancomycin-resistant Staphylococcus aureus (BIVR). J Infect Chemother. 2006;12:181–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Kehrenberg C, Schwarz S, Jacobson L, Hansen LH, Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol. 2005;57:1064–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol–florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother. 2000;44:2530–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Tsakris A, Pillai SK, Gold HS, Thauvin-Eliopoulos CT, Venkataraman L, Wennersten C, et al. Persistence of rRNA operon mutated copies and rapid re-emergence of linezolid resistance in Staphylococcus aureus. J Antimicrob Chemother. 2007;60:649–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Meka VG, Gold HS, Cooke A, Venkataraman L, Eliopoulos GM, Moellering RC Jr, et al. Reversion to susceptibility in a linezolid-resistant clinical isolate of Staphylococcus aureus. J Antimicrob Chemother. 2004;54:818–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Jones RN, Ross JE, Fitsche TR, Sader HS. Oxazolidinone susceptibility patterns in 2004: report from the Zyvox® annual appraisal of potency and spectrum (ZAAPS) program assessing isolates from 16 nations. J Antimicrob Chemother. 2006;57:279–87.CrossRefPubMedGoogle Scholar
  24. 24.
    Murray RW, Schaadt RD, Zurenko GE, Marotti KR. Ribosomes from an oxazolidinone-resistant mutant confer resistance to eperezolid in a Staphylococcus aureus cell-free transcription-translation assay. Antimicrob Agents Chemother. 1998;42:947–50.PubMedGoogle Scholar

Copyright information

© Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases 2010

Authors and Affiliations

  • Yurika Ikeda-Dantsuji
    • 1
  • Hideaki Hanaki
    • 1
  • Fuminori Sakai
    • 1
    • 2
  • Kazunori Tomono
    • 3
  • Yoshio Takesue
    • 4
  • Junichi Honda
    • 5
  • Yuriko Nonomiya
    • 6
  • Akira Suwabe
    • 6
  • Osanori Nagura
    • 7
  • Katsunori Yanagihara
    • 8
  • Hiroshige Mikamo
    • 9
  • Kunihiko Fukuchi
    • 10
  • Mitsuo Kaku
    • 11
  • Shigeru Kohno
    • 12
  • Chie Yanagisawa
    • 1
  • Taiji Nakae
    • 1
  • Koichiro Yoshida
    • 13
  • Yoshihito Niki
    • 13
  1. 1.Research Center for Anti-infectious Drugs, Kitasato Institute for Life SciencesKitasato UniversityTokyoJapan
  2. 2.Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
  3. 3.Department of Clinical Infectious DiseaseOsaka University School of MedicineSuitaJapan
  4. 4.Department of Infection Control and PreventionHyogo College of MedicineNishinomiyaJapan
  5. 5.Department of Infection ControlSt. Mary’s HospitalKurumeJapan
  6. 6.Central Clinical LaboratoryIwate Medical University HospitalMoriokaJapan
  7. 7.Department of Laboratory MedicineHamamatsu University School of MedicineHamamatsuJapan
  8. 8.Department of Laboratory MedicineNagasaki University School of MedicineNagasakiJapan
  9. 9.Department of Infection Control and PreventionAichi Medical UniversityAichiJapan
  10. 10.Department of Laboratory MedicineShowa University School of MedicineTokyoJapan
  11. 11.Department of Infection Control and Laboratory Diagnostics, Internal MedicineTohoku University Graduate School of MedicineSendaiJapan
  12. 12.The Second Department of Internal MedicineNagasaki University School of MedicineNagasakiJapan
  13. 13.Department of Clinical Infectious DiseaseShowa University School of MedicineTokyoJapan

Personalised recommendations