Advertisement

The antagonistic effects of a combination of vancomycin and minocycline in Staphylococcus aureus with heterogeneous resistance to vancomycin

  • Tomoko Oshiro
  • Zenzo Nagasawa
  • Hideaki Hanaki
  • Yurika Ikeda-Dantsuji
  • Ariaki NagayamaEmail author
Original Article

Abstract

Some methicillin-resistant Staphylococcus aureus (MRSA) strains in which combinations of vancomycin (VCM) and β-lactam antibiotics show antagonism have recently emerged, and these strains are called β-lactaminduced VCM-resistant MRSA (BIVR). We examined whether various antibiotics exhibited an antagonistic effect with VCM when used against Mu3 and Fu10 (representative BIVR strains), using a simple agar disc method. Chloramphenicol, tetracyclines, macrolides, and lincosamides showed an antagonistic effect with VCM. We attempted to elucidate the antagonistic mechanism of a combination of VCM and minocycline (MINO) in BIVR strains. We determined the rates of autolysis, autolytic activities, and the change in morphology of Mu3 treated with a combination of VCM and MINO. We observed that Mu3 grown in a combination of VCM and MINO showed increasing rates of autolysis, and lower minimal bacteriolytic enzyme dose (MBD) values compared with Mu3 grown in VCM alone, but no cell wall thickening was observed. Taken together, these results suggest that cell wall thickening may not be essential in the increased resistance of BIVR strains. Our present data therefore suggest that these combination therapies of VCM with tetracyclines should be adopted with great care in order to prevent VCM treatment failure.

Key words

β-Lactam-induced vancomycin-resistant MRSA Minocycline Autolytic activity Antagonism 

References

  1. 1.
    Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to VCM. Lancet 1997;350:1670–1673.PubMedCrossRefGoogle Scholar
  2. 2.
    Haraga I, Nomura S, Nagayama A. The effects of VCM and β-lactam antibiotics on vancomycin-resistant Staphylococcus aureus. N Engl J Med 1999;341:1624–1625.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu C, Chambers HF. Staphylococcus aureus with heterogeneous resistance to vancomycin: epidemiology, clinical significance, and critical assessment of diagnostic methods. Antimicrob Agents Chemother 2003;47:3040–3045.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyle-Vavra S, Berke SK, Lee JC, Daum RS. Reversion of the glycopeptide resistance phenotype in Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 2000;44:272–277.PubMedCrossRefGoogle Scholar
  5. 5.
    Pfeltz RF, Singh VK, Schmidt JL, Batten MA, Baranyk CS, Nadakavukaren MJ, et al. Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 2000;44:294–303.PubMedCrossRefGoogle Scholar
  6. 6.
    Sieradzki K, Leski T, Dick J, Borio L, Tomasz A. Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant Staphylococcus aureus under the impact of antibiotics administered for chemotherapy. J Clin Microbiol 2003;41:1687–1693.PubMedCrossRefGoogle Scholar
  7. 7.
    Ariza J, Pujol M, Cabo J, Pena C, Fernadez N, Linares J, et al. Vancomycin in surgical infections due to methicillin-resistant Staphylococcus aureus with heterogeneous resistance to VCM. Lancet 1999;353:1587–1588.PubMedCrossRefGoogle Scholar
  8. 8.
    Moise PA, Schentag JJ. Vancomycin treatment failures in Staphylococcus aureus lower respiratory tract infections. Int J Antimicrob Agents 2000;16:S31–S34.PubMedCrossRefGoogle Scholar
  9. 9.
    Moore MR, Perdreau-Remington F, Chambers HF. Vancomycin treatment failure associated with heterogeneous vancomycin-intermediate Staphylocococcus aureus in a patient with endocarditis and in the rabbit model of endocarditis. Antimicrob Agents Chemother 2003;47:1262–1266.PubMedCrossRefGoogle Scholar
  10. 10.
    Wong SS, Ho PL, Woo PC, Tuen KY. Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. Clin Infect Dis 1999;29:760–767.PubMedCrossRefGoogle Scholar
  11. 11.
    Haraga I, Nomura S, Fukumachi S, Ohjimi H, Hanaki H, Hiramatsu K, et al. Emergence of vancomycin resistance during therapy against methicillin-resistant Staphylococcus aureus in a burn patient-importance of low-level resistance to vancomycin. Int J Infect Dis 2002;6:302–308.PubMedCrossRefGoogle Scholar
  12. 12.
    Howe RA, Wootton M, Bennett PM, Macgowan AP, Walsh TR. Interaction between methicillin and vancomycin in methicillin-resistant Staphylococcus aureus strains displaying different phenotypes of vancomycin susceptibility. J Clin Microbiol 1999;37:3068–3071.PubMedGoogle Scholar
  13. 13.
    Aritaka N, Hanaki H, Cui L, Hiramatsu K. Combination effect of vancomycin and β-lactams against a Staphylococcus aureus strain, Mu3, with heterogeneous resistance to vancomycin. Antimicrob Agents Chemother 2001;45:1292–1294.PubMedCrossRefGoogle Scholar
  14. 14.
    Hanaki H, Yamaguchi Y, Nomura S, Haraga I, Nagayama A, Sunakawa K. Method of detecting β-lactam antibiotic induced vancomycin resistant MRSA (BIVR). Int J Antimicrob Agents 2004;23:1–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Sugai M, Akiyama T, Komatsuzawa H, Miyake Y, Suginaka H. Characterization of sodium dodecyl sulfate-stable Staphylococcus aureus bacteriolytic enzymes by polyacrylamide gel electrophoresis. J Bacteriol 1999;172:6494–6498.Google Scholar
  16. 16.
    Ohta K, Komatsuzawa H, Sugai M, Suginaka H. Zymographic characterization of Staphylococcus aureus cell wall. Microbiol Immunol 1998;42:231–235.PubMedGoogle Scholar
  17. 17.
    Nomura S, Nagayama A. Mechanism of enhancement of bactericidal activity of phagocytes against Klebsiella pneumoniae treated with subminimal inhibitory concentrations of cefodizime. Chemotherapy 1995;41:267–275.PubMedCrossRefGoogle Scholar
  18. 18.
    Climo WM, Patron RL, Archer GL. Combinations of vancomycin and β-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin. Antimicrob Agents Chemother 1999;43:1747–1753.PubMedGoogle Scholar
  19. 19.
    Sieradzki K, Roberts RB, Haber SW, Tomasz A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N Engl J Med 1999;340:517–523.PubMedCrossRefGoogle Scholar
  20. 20.
    Domaracki BE, Evans AM, Venezia RA. Vancomycin and oxacillin synergy for methicillin-resistant staphylococci. Antimicrob Agents Chemother 2000;44:1394–1396.PubMedCrossRefGoogle Scholar
  21. 21.
    Minuth JN, Holmes TM, Musher DM. Activity of tetracycline, doxycycline, and minocycline against methicillin-susceptible and resistant staphylococci. Antimicrob Agents Chemother 1974;6:411–414.PubMedGoogle Scholar
  22. 22.
    Takahashi K, Kanno H, Chen RM. Effects of combinations of vancomycin with other antibiotics against methicillin-resistant Staphylococcus aureus. Jpn J Chemother 1986;34:847–852.Google Scholar
  23. 23.
    Watanabe A, Anzai Y, Niitsuma K, Saito M, Yanase K, Nakamura M. Penetration of minocycline hydrochloride into lung tissue and sputum. Jpn J Chemother 2001;47:1–9.CrossRefGoogle Scholar
  24. 24.
    Torres JR, Sanders CV, Lewis AC. Vancomycin concentration in human tissues: preliminary report. J Antimicrob Chemother 1979;5:475–477.PubMedCrossRefGoogle Scholar
  25. 25.
    Niituma K, Saito M. Vancomycin inhalation therapy — a pharmacokinetic and clinical study of vancomycin. Antibiot Chemother 1996;122:123–135.Google Scholar
  26. 26.
    Fridkin SK, Hageman J, McDougal LK, Mohammed J, Jarvis WR, Perl TM, et al. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997–2001. Clin Infect Dis 2003;36:429–439.PubMedCrossRefGoogle Scholar
  27. 27.
    Koehl JL, Muthaiyan A, Jayaswal RK, Ehlert K, Labischinski H, Wilkinson BJ. Cell wall composition and decreased autolytic activity and lysostaphin susceptibility of glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2004;48:3749–3757.PubMedCrossRefGoogle Scholar
  28. 28.
    Boyle-Vavra S, Carey RB, Daum RS. Development of vancomycin and lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate. J Antimicrob Chemother 2001;48:617–625.PubMedCrossRefGoogle Scholar
  29. 29.
    Sieradzki K, Tomasz A. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 2003;185:7103–7110.PubMedCrossRefGoogle Scholar
  30. 30.
    Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 2003;41:5–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 1998;42:199–209.PubMedCrossRefGoogle Scholar
  32. 32.
    Smith TL, Pearson ML, Wilcox KR, Cruz C, Lancaster MV, Robinson-Dunn B, et al. Emergence of vancomycin resistance in Staphylococcus aureus. N Engl J Med 1999;340:493–501.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases 2008

Authors and Affiliations

  • Tomoko Oshiro
    • 1
  • Zenzo Nagasawa
    • 2
  • Hideaki Hanaki
    • 3
  • Yurika Ikeda-Dantsuji
    • 1
  • Ariaki Nagayama
    • 1
    Email author
  1. 1.Department of Microbiology and Immunology, School of MedicineFukuoka UniversityFukuokaJapan
  2. 2.Department of Laboratory MedicineSaga UniversitySagaJapan
  3. 3.Department of Infection Control LabThe Kitasato InstituteTokyoJapan

Personalised recommendations