Journal of Infection and Chemotherapy

, Volume 13, Issue 6, pp 390–395 | Cite as

Substrate specificity of HMRZ-86 for β-lactamases, including extended-spectrum β-lactamases (ESBLs)

  • Hideaki Hanaki
  • Yuuji Koide
  • Hiroaki Yamazaki
  • Ryoichi KuboEmail author
  • Tomota Nakano
  • Koichiro Atsuda
  • Keisuke Sunakawa


HMRZ-86 was designed as a new chromogenic cephalosporin to detect extended-spectrum β-lactamases (ESBLs) and similar evolved β-lactamases, such as metallo-β-lactamases, derepressed AmpC, and extended oxacillinase. We report here our investigation of the kinetic parameters of several types of β-lactamases to show the enzymatic characteristics of HMRZ-86. The Michaelis constant (K m values of HMRZ-86 for ESBLs were twice to three and half times as high as those of nitrocefin, and the maximum velocity (Vmax) was one-fifth that of nitrocefin. The K m and Vmax of HMRZ-86 for AmpC were both smaller than those of nitrocefin. The kinetic parameters of HMRZ-86 for metallo β-lactamase (MBL) were very variable, depending on the type of buffer solution used and the concentration of zinc ions. For MBL, the K m values of HMRZ-86 were higher than those of nitrocefin, but the Vmax values were almost the same as those of nitrocefin. Although the chemical structure of HMRZ-86 is similar to that of nitrocefin, we think the enzymatic reactivities of the two entities for β-lactamases are very different.

Key words

β-Lactamase extended-spectrum β-lactamases (ESBLs) Metallo β-lactamase (MBL) HMRZ-86 Enzymology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knothe, H, Shah, P, Krcmery, V, Antal, M, Mitsuhashi, S 1983Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens Infection113157PubMedCrossRefGoogle Scholar
  2. 2.
    Ishii, Y, Ohno, A, Taguchi, H, Imajo, S 1995Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A β-lactamase isolated from Escherichia coli Antimicrob Agents Chemother39226975PubMedGoogle Scholar
  3. 3.
    Okamoto R, Yuko S, Nakano R. J Med Technol 2001;45:833–9Google Scholar
  4. 4.
    Sabath, LD, Abdaham, EP 1966Zinc as a cofactor for a cephalosporinase from Bacillus cereus Biochem J9811c3cPubMedGoogle Scholar
  5. 5.
    Saino, Y, Kobayashi, F, Inoue, M, Mitsuhashi, S 1982Purification and properties of an inducible penicillin β-lactamase isolated from Pseudomonas maltophilia Antimicrob Agents Chemother2256470PubMedGoogle Scholar
  6. 6.
    Philippon, A, Arlet, G, Jacoby, G 2002Plasmid-Determined AmpC-Type β-lactamasesAntimicrob Agents Chemother46111PubMedCrossRefGoogle Scholar
  7. 7.
    Bladford, PA 2001Extended-spectrum beta-lactamases in the twenty-first century: characterization, epidemiology, and detection of this important resistance threatClin Microbiol Rev1493351CrossRefGoogle Scholar
  8. 8.
    Hanaki, H, Kubo, R, Nakano, T, Kurihara, M, Sunagawa, K 2004Characterization of HMRZ-86:a novel chromogenic cephalosporin for the detection of extended-spectrum β-lactamasesJ Antimicrob Chemother538889PubMedCrossRefGoogle Scholar
  9. 9.
    Hanaki, H, Yamazaki, H, Harada, H, Kobayashi, T, Atsuda, T, Sunagawa, K 2005The synthesis of 7-substituted-3-dinitrostyl cephalosporins and their ability for detecting extended-spectrum β-lactamases (ESBL)J Antibiot (Tokyo)586973Google Scholar
  10. 10.
    George, J, Luis, S 2005Mechanisms of disease. The new β-lactamasesNew Engl J Med2738091Google Scholar
  11. 11.
    Colodner, R, Reznik, B, Gal, V, Yamazaki, H, Hanaki, H, Kubo, R 2005Evaluation of novel kit for the rapid detection of extended-spectrum beta-lactamasesEur J Clin Microbiol Infect Dis254951CrossRefGoogle Scholar
  12. 12.
    Jain, S, Andrews, J, Fraise, A, Brenwald, N 2007Rapid detection of extended-spectrum β-lactamase-producing Gram-negative bacilli in blood culturesJ Antimicrob Chemother606524PubMedCrossRefGoogle Scholar
  13. 13.
    Yague, A, Rodriguez, J, Sandvang, D 2006Evaluation of a fast method for the detection of extended-spectrum β lactamase using a chromogenic cephalosporinRev Esp Quimioter191856PubMedGoogle Scholar
  14. 14.
    Knox, R 1995Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity and three dimensional structureAntimicrob Agents Chemother392593601PubMedGoogle Scholar
  15. 15.
    Ibuka, A, Taniguchi, A, Ishiguro, M, Yamaguchi, K, Frere, J,  et al. 1999Crystal stracture of the E166A mutant of extended-spectrum β-lactamases Toho-1 at 1.8Å resolutionJ Mol Biol285207987PubMedCrossRefGoogle Scholar
  16. 16.
    Medeiros, AA 1997Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibioticsClin Infect Dis24S1945PubMedGoogle Scholar
  17. 17.
    Sander, WE 1997Enterobacter spp pathogens poised to flourish at the turn of the centuryClin Microbiol Rev1022041Google Scholar
  18. 18.
    Galleni, M, Brassur, JL, Rossolini, GM 2001Standard numbering scheme for class B β-lactamasesAntimicrob Agents Chemother456603PubMedCrossRefGoogle Scholar
  19. 19.
    Kubo, R, Nakano, T 2004Resistant bacteria against β-lactam antibioticsThe Chemical Times11921Google Scholar

Copyright information

© Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases 2007

Authors and Affiliations

  • Hideaki Hanaki
    • 1
  • Yuuji Koide
    • 2
  • Hiroaki Yamazaki
    • 2
  • Ryoichi Kubo
    • 3
    Email author
  • Tomota Nakano
    • 4
  • Koichiro Atsuda
    • 5
  • Keisuke Sunakawa
    • 6
  1. 1.Research Center for Anti-Infective DrugsKitasato InstituteTokyoJapan
  2. 2.Research LaboratoryZenyaku Kogyo Co., Ltd.TokyoJapan
  3. 3.Department of Life ScienceKanto Chemical Co., Inc.TokyoJapan
  4. 4.Isehara Research LaboratoryKanagawaJapan
  5. 5.Center for Clinical Pharmacy and Clinical ScienceKitasato UniversityKitasatoJapan
  6. 6.Department of Infectious DiseaseKitasato UniversityKitasatoJapan

Personalised recommendations