Advertisement

The impact of postoperative inflammation on recurrence in patients with colorectal cancer

  • Daiki Matsubara
  • Tomohiro AritaEmail author
  • Masayoshi Nakanishi
  • Yoshiaki Kuriu
  • Yasutoshi Murayama
  • Michihiro Kudou
  • Hirotaka Konishi
  • Shuhei Komatsu
  • Atsushi Shiozaki
  • Eigo Otsuji
Original Article

Abstract

Background

Systemic inflammatory response is strongly linked to among cancer development, progression and poor prognosis. The aim of this study was to clarify the impact of postoperative serum C-reactive protein (CRP) levels on the prognoses of patients with colorectal cancer (CRC).

Methods

A total of 467 patients with stage I–III CRC who underwent curative surgery were retrospectively analyzed. To precisely evaluate the effect of postoperative inflammatory status on prognosis in CRC patients, we excluded patients with postoperative complication or elevated preoperative CRP level (CRP > 1.0 mg/dL). Patients were divided into two groups based on their highest post-resection CRP levels (max CRP): the low CRP group (LCG; < 9.0 mg/dL, n = 385) and high CRP group (HCG; ≥ 9.0 mg/dL, n = 82). Furthermore, the effect of inflammation on malignant potential of CRC cells was evaluated using in vitro peritoneal dissemination model.

Results

HCG patients showed significantly worse recurrence-free survival (RFS) than LCG patients (p = 0.012). Multivariate analysis revealed that a higher max CRP was an independent prognostic factor for RFS (HR: 2.07, 95% CI 1.04–3.96, p = 0.038). Concerning the risk factors for high max CRP level, multivariate analysis revealed that older age (p < 0.001), male sex (p < 0.001), higher BMI (p = 0.005), right-sided colorectal cancer (p = 0.008), and longer operative time (p = 0.007) were independent risk factors. A higher max CRP was also significantly associated with peritoneal recurrence (p < 0.001). Additionally, recombinant cytokines enhanced the adhesive ability of CRC cells to mesothelial cell in vitro (p < 0.05).

Conclusions

Postoperative inflammation may be a possible mechanism portending the poor prognosis of CRC patients.

Keywords

Colorectal cancer Postoperative inflammation CRP Recurrence Cytokine 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10147_2019_1580_MOESM1_ESM.pptx (42 kb)
Supplementary file1 (PPTX 41 kb)

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30CrossRefGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917CrossRefGoogle Scholar
  3. 3.
    Center for Cancer Control and Information Services, National Cancer Center, Japan. Statistics. https://ganjoho.jp/reg_stat/statistics/index.html. Accessed 3 Dec 2017
  4. 4.
    Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444CrossRefGoogle Scholar
  5. 5.
    Yamamura K, Sugimoto H, Kanda M et al (2014) Comparison of inflammation-based prognostic scores as predictors of tumor recurrence in patients with hepatocellular carcinoma after curative resection. J Hepatobiliary Pancreat Sci 21(9):682–688CrossRefGoogle Scholar
  6. 6.
    Kubota T, Hiki N, Nunobe S et al (2012) Significance of the inflammation-based Glasgow prognostic score for short- and long-term outcomes after curative resection of gastric cancer. J Gastrointest Surg 16(11):2037–2044CrossRefGoogle Scholar
  7. 7.
    Rossi S, Basso M, Strippoli A et al (2017) Are markers of systemic inflammation good prognostic indicators in colorectal cancer? Clin Colorectal Cancer 16(4):264–274.  https://doi.org/10.1016/j.clcc.2017.03.015(epub 2017 Mar 24) CrossRefPubMedGoogle Scholar
  8. 8.
    Kubota T, Hiki N, Sano T et al (2014) Prognostic significance of complications after curative surgery for gastric cancer. Ann Surg Oncol 21:891–898CrossRefGoogle Scholar
  9. 9.
    Lerut T, Moons J, Coosemans W et al (2009) Postoperative complications after transthoracic esophagectomy for cancer of the esophagus and gastroesophageal junction are correlated with early cancer recurrence: role of systematic grading of complications using the modified Clavien classification. Ann Surg 250:798–807CrossRefGoogle Scholar
  10. 10.
    Artinyan A, Orcutt ST, Anaya DA et al (2015) Infectious postoperative complications decrease long-term survival in patients undergoing curative surgery for colorectal cancer: a study of 12,075 patients. Ann Surg 261:497–505CrossRefGoogle Scholar
  11. 11.
    Lippitz BE (2013) Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 14:e218–e228CrossRefGoogle Scholar
  12. 12.
    Alonso S, Pascual M, Salvans S et al (2015) Postoperative intra-abdominal infection and colorectal cancer recurrence: a prospective matched cohort study of inflammatory and angiogenic responses as mechanisms involved in this association. Eur J Surg Oncol 41:208–214CrossRefGoogle Scholar
  13. 13.
    Di Caro G, Carvello M, Pesce S et al (2016) Circulating inflammatory mediators as potential prognostic markers of human colorectal cancer. PLoS ONE 11:e0148186CrossRefGoogle Scholar
  14. 14.
    Sparreboom CL, Wu Z, Dereci A et al (2016) Cytokines as early markers of colorectal anastomotic leakage: a systematic review and meta-analysis. Gastroenterol Res Pract 2016:3786418CrossRefGoogle Scholar
  15. 15.
    Yamamoto T, Umegae S, Matsumoto K et al (2011) Peritoneal cytokines as early markers of peritonitis following surgery for colorectal carcinoma: a prospective study. Cytokine 53:239–242CrossRefGoogle Scholar
  16. 16.
    Herwig R, Glodny B, Kühle C et al (2002) Early identification of peritonitis by peritoneal cytokine measurement. Dis Colon Rectum 45:514–521CrossRefGoogle Scholar
  17. 17.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570CrossRefGoogle Scholar
  18. 18.
    Castoldi G, Galimberti S, Riva C et al (2007) Association between serum values of C-reactive protein and cytokine production in whole blood of patients with type 2 diabetes. Clin Sci (Lond) 113:103–108CrossRefGoogle Scholar
  19. 19.
    Kim DK, Oh SY, Kwon HC et al (2009) Clinical significances of preoperative serum interleukin-6 and C-reactive protein level in operable gastric cancer. BMC Cancer 9:155CrossRefGoogle Scholar
  20. 20.
    Ikonomidis I, Andreotti F, Economou E et al (1999) Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin. Circulation 100:793–798CrossRefGoogle Scholar
  21. 21.
    Watanabe T, Muro K, Ajioka Y et al (2017) Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clin Oncol.  https://doi.org/10.1007/s10147-017-1101-6(Online March 27) CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sobin LH, Gospodarowicz MK, Wittekind Ch (eds) (2009) TNM classification of malignant tumors, 7th edn. Wiley-Blackwell, HobokenGoogle Scholar
  23. 23.
    Japanese Society for Cancer of the Colon and Rectum (2013) Japanese classification of colorectal carcinoma, 8th edn. Kanehara & CO., LTD, TokyoGoogle Scholar
  24. 24.
    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213CrossRefGoogle Scholar
  25. 25.
    Clavien PA, Barkun J, de Oliveira ML et al (2009) The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg 250:187–196CrossRefGoogle Scholar
  26. 26.
    Forrest LM, McMillan DC, McArdle CS et al (2003) Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br J Cancer 89(6):1028–1230CrossRefGoogle Scholar
  27. 27.
    Ahmed D, Eide PW, Eilertsen IA et al (2013) Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2:e71.  https://doi.org/10.1038/oncsis.2013.35 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Altman DG, Lausen B, Sauerbrei W, Schumacher M (1994) Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst 86:829–835CrossRefGoogle Scholar
  29. 29.
    Shishido Y, Fujitani K, Yamamoto K et al (2016) C-reactive protein on postoperative day 3 as a predictor of infectious complications following gastric cancer resection. Gastric Cancer 19(1):293–301.  https://doi.org/10.1007/s10120-014-0455-y(epub 2015 Jan 6) CrossRefPubMedGoogle Scholar
  30. 30.
    Warschkow R, Tarantino I, Torzewski M et al (2011) Diagnostic accuracy of C-reactive protein and white blood cell counts in the early detection of inflammatory complications after open resection of colorectal cancer: a retrospective study of 1,187 patients. Int J Colorectal Dis 26(11):1405–1413.  https://doi.org/10.1007/s00384-011-1262-0(epub 2011 Jun 24) CrossRefPubMedGoogle Scholar
  31. 31.
    Matsuda S, Takeuchi H, Kawakubo H et al (2015) Correlation between intense postoperative inflammatory response and survival of esophageal cancer patients who underwent transthoracic esophagectomy. Ann Surg Oncol 22:4453–4460CrossRefGoogle Scholar
  32. 32.
    Ibuki Y, Hamai Y, Hihara J et al (2017) Role of postoperative C-reactive protein levels in predicting prognosis after surgical treatment of esophageal cancer. World J Surg 41:1558–1565CrossRefGoogle Scholar
  33. 33.
    Saito T, Kurokawa Y, Miyazaki Y et al (2015) Which is a more reliable indicator of survival after gastric cancer surgery: postoperative complication occurrence or C-reactive protein elevation? J Surg Oncol 112(8):894–899.  https://doi.org/10.1002/jso.24067(epub 2015 Oct 13) CrossRefPubMedGoogle Scholar
  34. 34.
    Shiba H, Furukawa K, Fujiwara Y et al (2013) Postoperative peak serum C-reactive protein predicts outcome of hepatic resection for hepatocellular carcinoma. Anticancer Res 33:705–709PubMedGoogle Scholar
  35. 35.
    Lu CY, Uen YH, Tsai HL et al (2011) Molecular detection of persistent postoperative circulating tumour cells in stages II and III colon cancer patients via multiple blood sampling: prognostic significance of detection for early relapse. Br J Cancer 104:1178–1184CrossRefGoogle Scholar
  36. 36.
    Cathcart JM, Banach A, Liu A et al (2016) Interleukin-6 increases matrix metalloproteinase-14 (MMP-14) levels via down-regulation of p53 to drive cancer progression. Oncotarget 7:61107–61120CrossRefGoogle Scholar
  37. 37.
    Li Y, Wang L, Pappan L et al (2012) IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer 11:87CrossRefGoogle Scholar
  38. 38.
    Nagasaki T, Hara M, Nakanishi H et al (2014) Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour–stroma interaction. Br J Cancer 110:469–478CrossRefGoogle Scholar
  39. 39.
    De Simone V, Franzè E, Ronchetti G et al (2015) Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 34:3493–3503CrossRefGoogle Scholar
  40. 40.
    Salvans S, Mayol X, Alonso S et al (2014) Postoperative peritoneal infection enhances migration and invasion capacities of tumor cells in vitro. Ann Surg 260:939–943 (discussion 943–944) CrossRefGoogle Scholar
  41. 41.
    Saltzstein SL, Behling CA (2007) Age and time as factors in the left to right shift of the subsite of colorectal adenocarcinoma: a study of 213,383 cases from the California Cancer Registry. J Clin Gastroenterol 41:173–177CrossRefGoogle Scholar
  42. 42.
    Powell AG, Wallace R, McKee RF et al (2012) The relationship between tumour site, clinicopathological characteristics and cancer-specific survival in patients undergoing surgery for colorectal cancer. Colorectal Dis 14:1493–1499CrossRefGoogle Scholar
  43. 43.
    Benedix F, Kube R, Meyer F et al (2010) Colon/Rectum Carcinomas (Primary Tumor) Study Group. Comparison of 17,641 patients with right and left sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53:57–64CrossRefGoogle Scholar
  44. 44.
    Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356.  https://doi.org/10.1038/nm.3967(epub 2015 Oct 12) CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Arita T, Ichikawa D, Konishi H et al (2015) Increase in peritoneal recurrence induced by intraoperative hemorrhage in gastrectomy. Ann Surg Oncol 22:758–766CrossRefGoogle Scholar
  46. 46.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867 (review) CrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2019

Authors and Affiliations

  • Daiki Matsubara
    • 1
  • Tomohiro Arita
    • 1
    Email author
  • Masayoshi Nakanishi
    • 1
  • Yoshiaki Kuriu
    • 1
  • Yasutoshi Murayama
    • 1
  • Michihiro Kudou
    • 1
  • Hirotaka Konishi
    • 1
  • Shuhei Komatsu
    • 1
  • Atsushi Shiozaki
    • 1
  • Eigo Otsuji
    • 1
  1. 1.Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations