Advertisement

Recent treatment strategy for advanced squamous cell carcinoma of the lung in Japan

  • Satoru Senoo
  • Kiichiro Ninomiya
  • Katsuyuki HottaEmail author
  • Katsuyuki Kiura
Review Article
  • 60 Downloads

Abstract

Squamous cell carcinoma of the lung is associated with smoking in its development and comprises about 20–30% of all lung cancers. Its treatment strategy had been limited for the past decades, inevitably resulting in the poor outcome. However in the 2010s, it has dramatically changed mainly with the recent clinical introduction of immune checkpoint inhibitors. In this review, we will introduce various clinical studies involving squamous cell carcinoma of the lung.

Keywords

Squamous cell carcinoma of the lung Cytotoxic drug Immune checkpoint inhibitor 

Notes

Acknowledgements

This article is a secondary publication of the review article “Treatment for Advanced Squamous Cell Carcinoma of the Lung” accepted to Japanese Journal of Lung Cancer 2018 vol 58, page 325–330 in 2018.

Compliance with ethical standards

Conflict of interest

Satoru Senoo has no conflicts of interest. Kiichiro Ninomiya received honoraria from Astrazeneca, MSD, Bristol-Myers Squibb, and Ono pharmaceutical. Katsuyuki Hotta received honoraria from Astrazeneca, and MSD, and research funding from Chugai pharmaceutical, Eli Lilly Japan, Bristol-Myers Squibb, and Astellas Pharma. Katsuyuki Kiura received honoraria from Astrazeneca, and Eli Lilly Japan, and research funding from Astrazeneca, and Chugai pharmaceutical.

References

  1. 1.
    Toyoda Y, Nakayama T, Ioka A et al (2008) Trend in lung cancer incidence by histological type in Osaka, Japan. Jpn J Clin Oncol 38:534–539CrossRefGoogle Scholar
  2. 2.
    National Cancer Institute: SEER Cancer Statistics Review: Available via DIALOG https://seer.cancer.gov/. Accessed May 2018
  3. 3.
    Hotta K, Matsuo K, Ueoka H et al (2004) Meta-analysis of randomized clinical trials comparing cisplatin to carboplatin in patients with advanced non-small-cell lung cancer. J Clin Oncol 22:3852–3859CrossRefGoogle Scholar
  4. 4.
    Hotta K, Matsuo K, Ueoka H et al (2004) Addition of platinum compounds to a new agent in patients with advanced non-small-cell lung cancer: a literature based meta-analysis of randomised trials. Ann Oncol 15:1782–1789CrossRefGoogle Scholar
  5. 5.
    Hotta K, Matsuo K (2007) Long-standing debate on cisplatin- versus carboplatin-based chemotherapy in the treatment of advanced non-small-cell lung cancer. J Thorac Oncol 2:96CrossRefGoogle Scholar
  6. 6.
    Hotta K, Fujiwara Y, Matsuo K et al (2007) Recent improvement in the survival of patients with advanced nonsmall cell lung cancer enrolled in phase III trials of first-line, systemic chemotherapy. Cancer 109:939–948CrossRefGoogle Scholar
  7. 7.
    Hotta K, Takigawa N, Hisamoto-Sato A et al (2013) Reappraisal of short-term low-volume hydration in cisplatin-based chemotherapy: results of a prospective feasibility study in advanced lung cancer in the Okayama Lung Cancer Study Group Trial 1002. Jpn J Clin Oncol 43:1115–1123CrossRefGoogle Scholar
  8. 8.
    Ninomiya K, Hotta K, Hisamoto-Sato A et al (2016) Short-term low-volume hydration in cisplatin-based chemotherapy for patients with lung cancer: the second prospective feasibility study in the Okayama Lung Cancer Study Group Trial 1201. Int J Clin Oncol 21:81–87CrossRefGoogle Scholar
  9. 9.
    Hotta K, Ninomiya K, Takigawa N et al (2015) Reappraisal of short-term low-volume hydration in cisplatin-based chemotherapy; hoping for it as a public domain. Jpn J Clin Oncol 45:603–604Google Scholar
  10. 10.
    Hotta K, Sekine I, Tamura T et al (2001) A phase I/II study of cisplatin and vinorelbine chemotherapy in patients with advanced non-small cell lung cancer. Jpn J Clin Oncol 31:596–600CrossRefGoogle Scholar
  11. 11.
    Scagliotti GV, Parikh P, von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3543–3551CrossRefGoogle Scholar
  12. 12.
    Johnson DH, Fehrenbacher L, Novotny WF et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–2191CrossRefGoogle Scholar
  13. 13.
    Shukuya T, Yamanaka T, Seto T et al (2015) Nedaplatin plus docetaxel versus cisplatin plus docetaxel for advanced or relapsed squamous cell carcinoma of the lung (WJOG5208L): a randomised, open-label, phase 3 trial. Lancet Oncol 16:1630–1638CrossRefGoogle Scholar
  14. 14.
    Thatcher N, Hirsch FR, Luft AV et al (2015) Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol 16:763–774CrossRefGoogle Scholar
  15. 15.
    Yoshioka H, Watanabe S, Sakai H et al (2018) Gemcitabine-cisplatin (GC) + necitumumab (N) versus GC as first-line treatment for stage IV squamous cell lung cancer (SqCLC): an open-label randomized multicenter phase Ib-II trial in Japan. ASCO 2018 (Abs 9038)Google Scholar
  16. 16.
    Hotta K, Kiura K, Tabata M et al (2014) A Survey of Japanese thoracic oncologists’ perception of diagnostic and treatment strategies for EGFR-mutant or EML4-ALK-fusion non-small cell lung cancer. Chest 146:e222–e225CrossRefGoogle Scholar
  17. 17.
    Hotta K, Kiura K, Toyooka S et al (2007) Clinical significance of epidermal growth factor receptor gene mutations on treatment outcome after first-line cytotoxic chemotherapy in Japanese patients with non-small-cell lung cancer. J Thorac Oncol 2:632–637CrossRefGoogle Scholar
  18. 18.
    Kato Y, Hotta K, Takigawa N et al (2014) Factor associated with failure to administer subsequent treatment after progression in the first-line chemotherapy in EGFR-mutant non-small cell lung cancer: Okayama Lung Cancer Study Group experience. Cancer Chemother Pharmacol 73:943–950CrossRefGoogle Scholar
  19. 19.
    Hotta K, Kato Y, Leighl N et al (2015) Magnitude of the benefit of progression-free survival as a potential surrogate marker in phase 3 trials assessing targeted agents in molecularly selected patients with advanced non-small cell lung cancer. Syst Rev PLoS One 10:e0121211CrossRefGoogle Scholar
  20. 20.
    Kudo K, Hotta K, Ichihara E et al (2015) Impact of body surface area on survival in EGFR-mutant non-small cell lung cancer patients treated with gefitinib monotherapy: observational study of the Okayama Lung Cancer Study Group 0703. Cancer Chemother Pharmacol 76:251–256CrossRefGoogle Scholar
  21. 21.
    Kudo K, Hotta K, Bessho A et al (2016) Development of a skin rash within the first week and the therapeutic effect in afatinib monotherapy for EGFR-mutant non-small-cell lung cancer (NSCLC): Okayama Lung Cancer Study Group experience. Cancer Chemother Pharmacol 77:1005–1009CrossRefGoogle Scholar
  22. 22.
    Isozaki H, Hotta K, Ichihara E et al (2016) Protocol design for the bench to bed trial in alectinib-refractory non-small-cell lung cancer patients harboring the EML4-ALK fusion gene (ALRIGHT/OLCSG1405). Clin Lung Cancer 17:602–605CrossRefGoogle Scholar
  23. 23.
    Tamura T, Kato Y, Ohashi K et al (2018) Potential influence of interleukin-6 on the therapeutic effect of gefitinib in patients with advanced non-small cell lung cancer harbouring EGFR mutations. Biochem Biophys Res Commun 495:360–367CrossRefGoogle Scholar
  24. 24.
    Oda N, Hotta K, Yoshioka H et al (2016) Potential influence of being overweight on the development of hepatic dysfunction in Japanese patients with EGFR-mutated non-small cell lung cancer undergoing gefitinib monotherapy: the Okayama Lung Cancer Study Group experience. Cancer Chemother Pharmacol 78:941–947CrossRefGoogle Scholar
  25. 25.
    Maemondo M, Inoue A, Kobayashi K et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388CrossRefGoogle Scholar
  26. 26.
    Soria JC, Ohe Y, Vansteenkiste J et al (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 378:113–125CrossRefGoogle Scholar
  27. 27.
    Solomon BJ, Mok T, Kim DW et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer.N. Engl J Med 371:2167–2177CrossRefGoogle Scholar
  28. 28.
    Hida T, Nokihara H, Kondo M et al (2017) Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 390:29–39CrossRefGoogle Scholar
  29. 29.
    Bui KT, Cooper WA, Kao S et al (2018) Targeted molecular treatments in non-small cell lung cancer: a clinical guide for oncologists. J Clin Med 7:pii: E192.  https://doi.org/10.3390/jcm7080192 CrossRefGoogle Scholar
  30. 30.
    Shukuya T, Takahashi T, Kaira R et al (2011) Efficacy of gefitinib for non-adenocarcinoma non-small-cell lung cancer patients harboring epidermal growth factor receptor mutations: a pooled analysis of published reports. Cancer Sci 102:1032–1037CrossRefGoogle Scholar
  31. 31.
    Japanese Lung Cancer Society (2017) EBM no shuho ni yoru haigan shinryo guideline. Kanehara &Co. Ltd., TokyoGoogle Scholar
  32. 32.
    Kudoh S, Kato H, Nishiwaki Y et al (2008) Interstitial lung disease in Japanese patients with lung cancer. A cohort and nested case–control study. Am J Respir Crit Care Med 177:1348–1357CrossRefGoogle Scholar
  33. 33.
    Hotta K, Kiura K, Takigawa N et al (2010) Comparison of the incidence and pattern of interstitial lung disease during erlotinib and gefitinib treatment in Japanese patients with non-small cell lung cancer: the Okayama Lung Cancer Study Group experience. J Thorac Oncol 5:179–184CrossRefGoogle Scholar
  34. 34.
    Hotta K, Kiura K, Tabata M et al (2005) Interstitial lung disease in patients with non-small-cell lung cancer receiving gefitinib: an analysis of risk factors and treatment outcomes in Okayama Lung Cancer Study Group. Cancer J 11:417–424CrossRefGoogle Scholar
  35. 35.
    Reck M, Rodriguez-Abreu D, Robinson AG, KEYNOTE-024 Investigators et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833CrossRefGoogle Scholar
  36. 36.
    Brahmer JR, Rodríguez-Abreu D, Robinson AG et al (2017) Health-related quality-of-life results for pembrolizumab versus chemotherapy in advanced, PD-L1-positive NSCLC (KEYNOTE-024): a multicentre, international, randomised, open-label phase 3 trial. Lancet Oncol 18:1600–1609CrossRefGoogle Scholar
  37. 37.
    Reck M, Rodríguez-Abreu D, Robinson AG et al (2019) Updated analysis of KEYNOTE-024: pembrolizumab vs platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50%. J Clin Oncol.  https://doi.org/10.1200/JCO.18.00149 (epub ahead of print) Google Scholar
  38. 38.
    Lopes G, Wu YL, Kudaba I et al (2018) Pembrolizumab (pembro) versus platinum-based chemotherapy (chemo) as first-line therapy for advanced/metastatic NSCLC with a PD-L1 tumor proportion score (TPS) ≥ 1%: open-label, phase 3 KEYNOTE-042 study. ASCO 2018 (Abs LBA4)Google Scholar
  39. 39.
    Paz-Ares L, Luft A, Vicente D et al (2018) Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 379:2040–2051CrossRefGoogle Scholar
  40. 40.
    Jotte RM, Cappuzzo F, Vynnychenko I et al (2018) IMpower131: primary PFS and safety analysis of a randomized phase III study of atezolizumab + carboplatin + paclitaxel or nab-paclitaxel vs carboplatin + nab-paclitaxel as 1L therapy in advanced squamous NSCLC. ASCO 2018 (Abs LBA9000)Google Scholar
  41. 41.
    Socinski MA, Rittmeyer A, Shapovalov D et al (2018) IMpower131: progression-free survival (PFS) and overall survival (OS) analysis of a randomised Phase III study of atezolizumab + carboplatin + paclitaxel or nab-paclitaxel vs carboplatin + nab-paclitaxel in 1L advanced squamous NSCLC. ESMO 2018Google Scholar
  42. 42.
    Govindan R, Szczesna A, Ahn MJ et al (2017) Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol 35:3449–3457CrossRefGoogle Scholar
  43. 43.
    Hellmann MD, Ciuleanu TE, Pluzanski A et al (2018) Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 31:2093–2104CrossRefGoogle Scholar
  44. 44.
    Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135CrossRefGoogle Scholar
  45. 45.
    Herbst RS, Baas P, Kim DW et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550CrossRefGoogle Scholar
  46. 46.
    Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265CrossRefGoogle Scholar
  47. 47.
    Gadgeel S, Kowanetz F, Zou W et al (2017) Clinical efficacy of atezolizumab (Atezo) in PD-L1 subgroups defined by SP142 and 22C3 IHC assays in 2L + NSCLC: results from the randomized OAK study. ESMO 2017 (Abs 1296O)Google Scholar
  48. 48.
    Garon EB, Ciuleanu TE, Arrieta O et al (2014) Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384:665–673CrossRefGoogle Scholar
  49. 49.
    Nokihara H, Lu S, Mok TSK et al (2017) Randomized controlled trial of S-1 versus docetaxel in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy (East Asia S-1 Trial in Lung Cancer). Ann Oncol 28:2698–2706CrossRefGoogle Scholar
  50. 50.
    Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218CrossRefGoogle Scholar
  51. 51.
    Rizvi H, Sanchez-Vega F, La K et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36:633–641CrossRefGoogle Scholar
  52. 52.
    Cyriac G, Gandhi L (2018) Emerging biomarkers for immune checkpoint inhibition in lung cancer. Semin Cancer Biol 52:269–277CrossRefGoogle Scholar
  53. 53.
    Curran MA, Montalvo W, Yagita H et al (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280CrossRefGoogle Scholar
  54. 54.
    Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34CrossRefGoogle Scholar
  55. 55.
    Hodi FS, Chiarion-Sileni V, Gonzalez R et al (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol.  https://doi.org/10.1016/S1470-2045(18)30700-9 (epub ahead of print) Google Scholar
  56. 56.
    Motzer RJ, Tannir NM, McDermott DF et al (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378:1277–1290CrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2019

Authors and Affiliations

  • Satoru Senoo
    • 1
  • Kiichiro Ninomiya
    • 1
  • Katsuyuki Hotta
    • 2
    • 3
    Email author
  • Katsuyuki Kiura
    • 3
  1. 1.Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
  2. 2.Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
  3. 3.Department of Respiratory MedicineOkayama University HospitalOkayamaJapan

Personalised recommendations