Advertisement

International Journal of Clinical Oncology

, Volume 24, Issue 7, pp 825–835 | Cite as

Inflammation–nutrition score predicts prognosis of patients with resectable hepatocellular carcinoma

  • Xiao-Chun Ni
  • Jie Xu
  • Yong Yi
  • Yi-Peng Fu
  • Xiao-Yan Cai
  • Gao Liu
  • Jin-Long Huang
  • Wei Gan
  • Shuang-Jian QiuEmail author
Original Article
  • 78 Downloads

Abstract

Background

Various inflammation-based prognostic scores have been associated with poor survival in patients with hepatocellular carcinoma (HCC).

Methods

Data were collected retrospectively from 674 HCC patients who underwent curative resection. The correlation between INS (inflammation–nutrition score), BCLC (Barcelona Clinic Liver Cancer) stage and inflammatory indices and overall survival (OS) and disease free survival (DFS) was examined.

Results

An elevated INS was associated with both tumor and host clinical characteristics. The combination of INS and BCLC stage stratifies OS and DFS from 80% and 65% (INS = 0, stage A) to 0% (INS = 2, stage C). Univariate and multivariate analyses revealed that the INS was an independent predictor for OS and DFS, and was superior to inflammation-based scores. In addition, INS was demonstrated to be a prognostic factor for patients with early stage and had a higher AUC value in comparison with inflammation scores.

Conclusion

This study demonstrates that the INS is an independent marker of poor prognosis in patients with resectable HCC, especially for those with early stage, and it provides complimentary prognostic information to BCLC stage, and may aid in treatment strategy.

Keywords

Inflammation–nutrition score Hepatocellular carcinoma Prognosis 

Notes

Acknowledgements

This work was in part supported by National Key Sci-Tech Special Project of China (Grant 2012ZX10002010-001/002), the National Natural Science Foundation of China (Grant 81302102), and the Basic Research Programs of Science and Technology Commission Foundation of Shanghai (Grants 13JC1401800, XBR2013074, and 13CG04).

Author contributions

Conception/Design: X-CN, JX, and S-JQ. Provision of study material or patients: YY, Y-PF, and X-CN. Collection and/or assembly of data: Y-PF, J-LH, and X-YC. Data analysis and interpretation: GL, J-LH, WG, Y-PF, X-CN, and S-JQ. Manuscript writing: X-CN, JX, and S-JQ. Final approval of manuscript: X-CN and S-JQ.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Zhongshan Hospital.

Supplementary material

10147_2019_1402_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 KB)
10147_2019_1402_MOESM2_ESM.docx (30 kb)
Supplementary material 2 (DOCX 29 KB)
10147_2019_1402_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 13 KB)
10147_2019_1402_MOESM4_ESM.tif (15.9 mb)
Supplementary material 4 (TIF 16257 KB)
10147_2019_1402_MOESM5_ESM.tif (16.1 mb)
Supplementary material 5 (TIF 16512 KB)
10147_2019_1402_MOESM6_ESM.tif (14.6 mb)
Supplementary material 6 (TIF 14977 KB)
10147_2019_1402_MOESM7_ESM.tif (15.1 mb)
Supplementary material 7 (TIF 15488 KB)

References

  1. 1.
    Lindsey A, Torre M, Freddie Bray P et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefGoogle Scholar
  2. 2.
    Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 2(66):115–132CrossRefGoogle Scholar
  3. 3.
    Ng KK, Lo CM, Liu CL et al (2008) Survival analysis of patients with transplantable recurrent hepatocellular carcinoma: implications for salvage liver transplant. Arch Surg 143(1):68–74CrossRefGoogle Scholar
  4. 4.
    Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90CrossRefGoogle Scholar
  5. 5.
    McAllister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16(8):717–727CrossRefGoogle Scholar
  6. 6.
    Proctor MJ, Morrison DS, Talwar D et al (2011) A comparison of inflammation-based prognostic scores in patients with cancer. A Glasgow Inflammation Outcome Study. Eur J Cancer 47(17):2633–2641CrossRefGoogle Scholar
  7. 7.
    Shrotriya S, Walsh D, Bennani-Baiti N et al (2015) C-reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: a systematic review. PLoS One 10(12):e0143080CrossRefGoogle Scholar
  8. 8.
    Templeton AJ, McNamara MG, Šeruga B et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6):dju124CrossRefGoogle Scholar
  9. 9.
    Pang Q, Zhang JY, Xu XS et al (2015) Significance of platelet count and platelet-based models for hepatocellular carcinoma recurrence. World J Gastroenterol 21(18):5607–5621CrossRefGoogle Scholar
  10. 10.
    Chan AW, Chan SL, Wong GL et al (2015) Prognostic nutritional index (PNI) predicts tumor recurrence of very early/early stage hepatocellular carcinoma after surgical resection. Ann Surg Oncol 22(13):4138–4148CrossRefGoogle Scholar
  11. 11.
    Lai Q, Castro Santa E, Rico Juri JM et al (2014) Neutrophil and platelet-to-lymphocyte ratio as new predictors of dropout and recurrence after liver transplantation for hepatocellular cancer. Transpl Int 27(1):32–41CrossRefGoogle Scholar
  12. 12.
    Yamamura K, Sugimoto H, Kanda M et al (2014) Comparison of inflammation-based prognostic scores as predictors of tumor recurrence in patients with hepatocellular carcinoma after curative resection. J Hepato Biliary Pancreat Sci 21(9):682–688CrossRefGoogle Scholar
  13. 13.
    Proctor MJ, Morrison DS, Talwar D et al (2011) An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: a Glasgow Inflammation Outcome Study. Br J Cancer 104(4):726–734CrossRefGoogle Scholar
  14. 14.
    Kinoshita A, Onoda H, Imai N et al (2013) The Glasgow Prognostic Score, an inflammation based prognostic score, predicts survival in patients with hepatocellular carcinoma. BMC Cancer 13:52CrossRefGoogle Scholar
  15. 15.
    Pinato DJ, Stebbing J, Ishizuka M et al (2012) A novel and validated prognostic index in hepatocellular carcinoma: the inflammation based index (IBI). J Hepatol 57(5):1013–1020CrossRefGoogle Scholar
  16. 16.
    Nakamura M, Iwahashi M, Nakamori M et al (2014) New prognostic score for the survival of patients with esophageal squamous cell carcinoma. Surg Today 44(5):875–883CrossRefGoogle Scholar
  17. 17.
    Arigami T, Okumura H, Matsumoto M et al (2015) Analysis of the fibrinogen and neutrophil-lymphocyte ratio in esophageal squamous cell carcinoma: a promising blood marker of tumor progression and prognosis. Medicine (Baltim) 94(42):e1702CrossRefGoogle Scholar
  18. 18.
    Hirashima K, Watanabe M, Shigaki H et al (2014) Prognostic significance of the modified Glasgow prognostic score in elderly patients with gastric cancer. J Gastroenterol 49(6):1040–1046CrossRefGoogle Scholar
  19. 19.
    Kawashima M, Murakawa T, Shinozaki T et al (2015) Significance of the Glasgow Prognostic Score as a prognostic indicator for lung cancer surgery. Interact Cardiovasc Thorac Surg 21(5):637–643CrossRefGoogle Scholar
  20. 20.
    Takeno S, Hashimoto T, Shibata R et al (2014) The high-sensitivity modified Glasgow prognostic score is superior to the modified Glasgow prognostic score as a prognostic predictor in patients with resectable gastric cancer. Oncology 87(4):205–214CrossRefGoogle Scholar
  21. 21.
    Ishizuka M, Kubota K, Kita J et al (2011) Usefulness of a modified inflammation-based prognostic system for predicting postoperative mortality of patients undergoing surgery for primary hepatocellular carcinoma. J Surg Oncol 103(8):801–806CrossRefGoogle Scholar
  22. 22.
    Van Dijk M, Pot GK (2016) The effects of nutritional interventions on recurrence in survivors of colorectal adenomas and cancer: a systematic review of randomised controlled trials. Eur J Clin Nutr 70(5):566–573CrossRefGoogle Scholar
  23. 23.
    Pergialiotis V, Doumouchtsis SK, Perrea D et al (2016) The impact of underweight status on the prognosis of ovarian cancer patients: a meta-analysis. Nutr Cancer 68(6):918–925CrossRefGoogle Scholar
  24. 24.
    Mantzorou M, Koutelidakis A, Theocharis S et al (2017) Clinical value of nutritional status in cancer: what is its impact and how it affects disease progression and prognosis? Nutr Cancer 69(8):1151–1176CrossRefGoogle Scholar
  25. 25.
    Davis CJ, Sowa D, Keim KS et al (2012) The use of prealbumin and C-reactive protein for monitoring nutrition support in adult patients receiving enteral nutrition in an urban medical center. J Parenter Enter Nutr 36(2):197–204CrossRefGoogle Scholar
  26. 26.
    Lee JL, Oh ES, Lee RW et al (2015) Serum albumin and prealbumin in calorically restricted, nondiseased individuals: a systematic review. Am J Med 128(9):1023.e1–1023.e22CrossRefGoogle Scholar
  27. 27.
    Alifano M, Falcoz PE, Seegers V et al (2011) Preresection serum C-reactive protein measurement and survival among patients with resectable non-small cell lung cancer. J Thorac Cardiovasc Surg 142(5):1161–1167CrossRefGoogle Scholar
  28. 28.
    Kawai H, Ota H (2012) Low perioperative serum prealbumin predicts early recurrence after curative pulmonary resection for non-small-cell lung cancer. World J Surg 36(12):2853–2857CrossRefGoogle Scholar
  29. 29.
    Zhang L, Su Y, Chen Z et al (2017) The prognostic value of preoperative inflammation-based prognostic scores and nutritional status for overall survival in resected patients with nonmetastatic Siewert type II/III adenocarcinoma of esophagogastric junction. Medicine (Baltim) 96(30):e7647CrossRefGoogle Scholar
  30. 30.
    Han WX, Chen ZM, Wei ZJ et al (2016) Preoperative pre-albumin predicts prognosis of patients after gastrectomy for adenocarcinoma of esophagogastric junction. World J Surg Oncol 14(1):279CrossRefGoogle Scholar
  31. 31.
    Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10(21):7252–7259CrossRefGoogle Scholar
  32. 32.
    Sun HC, Zhang W, Qin LX et al (2007) Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. J Hepatol 47(5):684–690CrossRefGoogle Scholar
  33. 33.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  34. 34.
    Kinoshita A, Onoda H, Imai N et al (2015) C-reactive protein as a prognostic marker in patients with hepatocellular carcinoma. Hepatogastroenterology 62(140):966–970Google Scholar
  35. 35.
    Proctor MJ, McMillan DC, Horgan PG et al (2015) Systemic inflammation predicts all-cause mortality: a glasgow inflammation outcome study. PLoS ONE 10(3):e0116206CrossRefGoogle Scholar
  36. 36.
    Abe T, Tashiro H, Hattori M et al (2016) Prediction of long-term survival by using the Glasgow Prognostic Score in patients with hepatocellular carcinoma after liver transplantation. Hepatol Res 46(7):622–633CrossRefGoogle Scholar
  37. 37.
    Amri R, Bordeianou LG, Sylla P et al (2014) Obesity, outcomes and quality of care: body mass index increases the risk of wound-related complications in colon cancer surgery. Am J Surg 207(1):17–23CrossRefGoogle Scholar
  38. 38.
    Balentine CJ, Wilks J, Robinson C et al (2010) Obesity increases wound complications in rectal cancer surgery. J Surg Res 163(1):35–39CrossRefGoogle Scholar
  39. 39.
    Santoso JT, Barton G, Riedley-Malone S et al (2012) Obesity and perioperative outcomes in endometrial cancer surgery. Arch Gynecol Obstet 285(4):1139–1144CrossRefGoogle Scholar
  40. 40.
    Tsai S, Choti MA, Assumpcao L et al (2010) Impact of obesity on perioperative outcomes and survival following pancreaticoduodenectomy for pancreatic cancer: a large single-institution study. J Gastrointest Surg 14(7):1143–1150CrossRefGoogle Scholar
  41. 41.
    Bhayani NH, Hyder O, Frederick W et al (2012) Effect of metabolic syndrome on perioperative outcomes after liver surgery: a National Surgical Quality Improvement Program (NSQIP) analysis. Surgery 152(2):218–226CrossRefGoogle Scholar
  42. 42.
    Suh B, Park S, Shin DW et al (2014) Low albumin-to-globulin ratio associated with cancer incidence and mortality in generally healthy adults. Ann Oncol 25(11):2260–2266CrossRefGoogle Scholar
  43. 43.
    Alifano M, Mansuet-Lupo A, Lococo F et al (2014) Systemic inflammation, nutritional status and tumor immune microenvironment determine outcome of resected non-small cell lung cancer. PLoS One 9(9):e106914CrossRefGoogle Scholar
  44. 44.
    Yang XR, Xu Y, Yu B et al (2010) High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 59(7):953–962CrossRefGoogle Scholar
  45. 45.
    Fan ST, Mau Lo C, Poon RT et al (2011) Continuous improvement of survival outcomes of resection of hepatocellular carcinoma: a 20-year experience. Ann Surg 253(4):745–758CrossRefGoogle Scholar
  46. 46.
    Poon RT, Fan ST, Lo CM et al (2000) Long-term prognosis after resection of hepatocellular carcinoma associated with hepatitis B-related cirrhosis. J Clin Oncol 18(5):1094–1101CrossRefGoogle Scholar
  47. 47.
    Torzilli G, Belghiti J, Kokudo N et al (2013) A snapshot of the effective indications and results of surgery for hepatocellular carcinoma in tertiary referral centers: is it adherent to the EASL/AASLD recommendations? An observational study of the HCC East–West study group. Ann Surg 257(5):929–937CrossRefGoogle Scholar
  48. 48.
    EASL-EORTC Clinical Practice Guidelines (2012) Management of hepatocellular carcinoma. J Hepatol 56(4):908–943CrossRefGoogle Scholar
  49. 49.
    Guthrie GJ, Roxburgh CS, Farhan-Alanie OM et al (2013) Comparison of the prognostic value of longitudinal measurements of systemic inflammation in patients undergoing curative resection of colorectal cancer. Br J Cancer 109(1):24–28CrossRefGoogle Scholar
  50. 50.
    Okuno M, Ebata T, Yokoyama Y et al (2016) Evaluation of inflammation-based prognostic scores in patients undergoing hepatobiliary resection for perihilar cholangiocarcinoma. J Gastroenterol 51(2):153–161CrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2019

Authors and Affiliations

  • Xiao-Chun Ni
    • 1
  • Jie Xu
    • 2
  • Yong Yi
    • 3
  • Yi-Peng Fu
    • 4
  • Xiao-Yan Cai
    • 5
  • Gao Liu
    • 3
  • Jin-Long Huang
    • 3
  • Wei Gan
    • 3
  • Shuang-Jian Qiu
    • 3
    Email author
  1. 1.General SurgeryShanghai Ninth People’s HospitalShanghaiPeople’s Republic of China
  2. 2.Infection DiseaseShanghai Ninth People’s HospitalShanghaiPeople’s Republic of China
  3. 3.Hepatic Surgery, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiPeople’s Republic of China
  4. 4.Obstetrics and Gynecology Hospital of Fudan UniversityShanghaiPeople’s Republic of China
  5. 5.General SurgeryShanghai Pudong Gongli HospitalShanghaiPeople’s Republic of China

Personalised recommendations