International Journal of Clinical Oncology

, Volume 24, Issue 4, pp 411–419 | Cite as

The combination of bevacizumab/temsirolimus after first-line anti-VEGF therapy in advanced renal-cell carcinoma: a clinical and biomarker study

  • Aristotelis BamiasEmail author
  • Vasilios Karavasilis
  • Nikolaos GavalasEmail author
  • Kimon Tzannis
  • Epaminontas Samantas
  • Gerasimos Aravantinos
  • Angelos Koutras
  • Ioannis Gkerzelis
  • Euthymios Kostouros
  • Konstantinos Koutsoukos
  • Flora Zagouri
  • George Fountzilas
  • Meletios-Athanasios Dimopoulos
Original Article



Vascular endothelial growth factor (VEGF) targeting represents the standard first-line therapy for metastatic renal-cell carcinoma (mRCC), while blocking the mammalian target of rapamycin (mTOR) is effective in relapsed disease. Since continuing blockade of VEGF may be of value, we studied the combination of bevacizumab with temsirolimus in mRCC patients relapsing after first-line treatment.


A prospective, phase II study of the combination of bevacizumab (10 mg/kg, every 2 weeks) with temsirolimus (25 mg weekly) in patients with mRCC who failed first-line anti-VEGF treatment. 6-month progression-free survival (PFS) rate was the primary end point. The association of VEGFa, VEGFR2, fibroblast growth factor (FGF) b, platelet-derived growth factor receptor (PDGFR) a and PDGFRb with prognostic factors and outcomes were also studied.


39 patients were enrolled. First-line therapy included: sunitinib (n = 16), bevacizumab/interferon (n = 12), pazopanib (n = 10), sorafenib (n = 1). After a median follow-up of 37 months, 6-month PFS rate was 50.9% [95% confidence interval (CI) 33.8–65.7], median time to progression 6.8 months (95% CI 5.5–9.2) and median overall survival (OS) 18.2 months (95% CI 12.9–27.2). Objective response rate was 27%. The most common AEs were metabolic (33%), renal (8%) and gastrointestinal (GI) (7%). The most common grade 3–5 AEs were GI (18%), infections (14%) and metabolic (25%). Toxicity was the most frequent cause of treatment discontinuation (40%). FGFb levels were associated with OS.


In concert with recent data, our study confirms the efficacy of anti-VEGF/anti-mTOR combination in mRCC relapsing after anti-VEGF therapy. Toxicity was considerable leading to high rate of treatment discontinuations.

Trial registration NCT01264341


Renal cancer Metastatic Second-line, temsirolimus Bevacizumab FGF 



The correlative biomarker studies were supported by the Hellenic Genito-Urinary Cancer Group (HGUCG). The clinical study was supported by an internal HeCOG research grant and by research grants from F. Hoffmann-La Roche and Pfizer.

Compliance with ethical standards

Conflict of interest

Aristotelis Bamias: Honoraria, Advisory Boards, Research funding: Novartis, Pfizer, Roche, Astra-Zeneca, BMS, Bayer. Vasilios Karavasilis Advisory Board: Amgen, Pfizer, Novartis, BI, Lilly, Roche, Astellas, Genesis-Pharma and Janssen. Gerasimos Aravantinos Advisory Board: Novartis, BMS, Roche Hellas, Astra Zeneca, Sanofi, Amgen, Genesis Pharma, Merck, Pfizer. Angelos Koutras: Advisory Board: Roche. George Fountzilas. Advisory Board: Pfizer, Sanofi and Roche. Honoraria from Astra-Zeneca. Meletios-Athanassios Dimopoulos: Honoraria, Advisory Board: Janssen, Celgene, Amgen and Takeda.

Supplementary material

10147_2018_1361_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 KB)


  1. 1.
    Decker HJ, Weidt EJ, Brieger J (1997) The von Hippel-Lindau tumor suppressor gene. A rare and intriguing disease opening new insight into basic mechanisms of carcinogenesis. Cancer Genet Cytogenet 93(1):74–83CrossRefGoogle Scholar
  2. 2.
    Rini BI, Small EJ (2005) Biology and clinical development of vascular endothelial growth factor-targeted therapy in renal cell carcinoma. J Clin Oncol 23(5):1028–1043. CrossRefGoogle Scholar
  3. 3.
    Escudier B, Pluzanska A, Koralewski P et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370(9605):2103–2111. CrossRefGoogle Scholar
  4. 4.
    Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124. CrossRefGoogle Scholar
  5. 5.
    Sternberg CN, Davis ID, Mardiak J et al (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28(6):1061–1068. CrossRefGoogle Scholar
  6. 6.
    Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275. CrossRefGoogle Scholar
  7. 7.
    Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456. CrossRefGoogle Scholar
  8. 8.
    Mancuso MR, Davis R, Norberg SM et al (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116(10):2610–2621. CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67(6):2729–2735. CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ikezoe T, Nishioka C, Tasaka T et al (2006) The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol Cancer Ther 5(10):2522–2530. CrossRefGoogle Scholar
  11. 11.
    Choueiri TK (2008) Factors associated with outcome in patients with advanced renal cell carcinoma in the era of antiangiogenic agents. Clin Genitourin Cancer 6(1):15–20. CrossRefGoogle Scholar
  12. 12.
    Harris AL, Reusch P, Barleon B et al (2001) Soluble Tie2 and Flt1 extracellular domains in serum of patients with renal cancer and response to antiangiogenic therapy. Clin Cancer Res 7(7):1992–1997Google Scholar
  13. 13.
    Cumpanas AA, Cimpean AM, Ferician O et al (2016) The involvement of PDGF-B/pdgfrbeta axis in the resistance to antiangiogenic and antivascular therapy in renal cancer. Anticancer Res 36(5):2291–2295Google Scholar
  14. 14.
    Casanovas O, Hicklin DJ, Bergers G et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309. CrossRefGoogle Scholar
  15. 15.
    Negrier S, Gravis G, Perol D et al (2011) Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol 12(7):673–680. CrossRefGoogle Scholar
  16. 16.
    Calvo E, Escudier B, Motzer RJ et al (2012) Everolimus in metastatic renal cell carcinoma: Subgroup analysis of patients with 1 or 2 previous vascular endothelial growth factor receptor-tyrosine kinase inhibitor therapies enrolled in the phase III RECORD-1 study. Eur J Cancer 48(3):333–339. CrossRefGoogle Scholar
  17. 17.
    Motzer RJ, Escudier B, Oudard S et al (2010) Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer 116(18):4256–4265. CrossRefGoogle Scholar
  18. 18.
    Motzer RJ, Escudier B, Tomczak P et al (2013) Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol 14(6):552–562. CrossRefGoogle Scholar
  19. 19.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 373(19):1803–1813. CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Choueiri TK, Escudier B, Powles T et al (2016) Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol 17(7):917–927. CrossRefGoogle Scholar
  21. 21.
    Rini BI, Bellmunt J, Clancy J et al (2014) Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol 32(8):752–759. CrossRefGoogle Scholar
  22. 22.
    Ravaud A, Barrios CH, Alekseev B et al (2015) RECORD-2: phase II randomized study of everolimus and bevacizumab versus interferon alpha-2a and bevacizumab as first-line therapy in patients with metastatic renal cell carcinoma. Ann Oncol 26(7):1378–1384. CrossRefGoogle Scholar
  23. 23.
    Merchan JR, Qin R, Pitot H et al (2015) Safety and activity of temsirolimus and bevacizumab in patients with advanced renal cell carcinoma previously treated with tyrosine kinase inhibitors: a phase 2 consortium study. Cancer Chemother Pharmacol 75(3):485–493. CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Mahoney KM, Jacobus S, Bhatt RS et al (2016) Phase 2 study of bevacizumab and temsirolimus after VEGFR TKI in metastatic renal cell carcinoma. Clin Genitourin Cancer 14(4):304–313 e306. CrossRefGoogle Scholar
  25. 25.
    Motzer RJ, Hutson TE, Glen H et al (2015) Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 16(15):1473–1482. CrossRefGoogle Scholar
  26. 26.
    Choueiri TK, Halabi S, Sanford BL et al (2017) Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J Clin Oncol 35(6):591–597. CrossRefGoogle Scholar
  27. 27.
    Hu MM, Hu Y, Gao GK et al (2015) Basic fibroblast growth factor shows prognostic impact on survival in operable non-small cell lung cancer patients. Thorac Cancer 6(4):450–457. CrossRefGoogle Scholar
  28. 28.
    Barrientos S, Stojadinovic O, Golinko MS et al (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601. CrossRefGoogle Scholar
  29. 29.
    Motzer RJ, Porta C, Vogelzang NJ et al (2014) Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncol 15(3):286–296. CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Tabernero J, Bahleda R, Dienstmann R et al (2015) Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol 33(30):3401–3408. CrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2018

Authors and Affiliations

  • Aristotelis Bamias
    • 1
    Email author
  • Vasilios Karavasilis
    • 2
  • Nikolaos Gavalas
    • 1
    Email author
  • Kimon Tzannis
    • 1
  • Epaminontas Samantas
    • 3
  • Gerasimos Aravantinos
    • 4
  • Angelos Koutras
    • 5
  • Ioannis Gkerzelis
    • 6
  • Euthymios Kostouros
    • 1
  • Konstantinos Koutsoukos
    • 1
  • Flora Zagouri
    • 1
  • George Fountzilas
    • 7
    • 8
  • Meletios-Athanasios Dimopoulos
    • 1
  1. 1.Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of AthensAthensGreece
  2. 2.Department of Medical Oncology, Papageorgiou Hospital, School of Health Sciences, Faculty of MedicineAristotle University of ThessalonikiThessaloníkiGreece
  3. 3.Third Department of Medical OncologyAgii Anargiri Cancer HospitalAthensGreece
  4. 4.Department of Medical OncologyAgii Anargiri Cancer HospitalAthensGreece
  5. 5.Division of Oncology, Department of Medicine, University HospitalUniversity of Patras Medical SchoolPatrasGreece
  6. 6.Department of UrologyGeneral Hospital Konstantopouleio Agia OlgaAthensGreece
  7. 7.Laboratory of Molecular OncologyHellenic Foundation for Cancer Research/Aristotle University of ThessalonikiThessaloníkiGreece
  8. 8.Aristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations