International Journal of Clinical Oncology

, Volume 23, Issue 3, pp 410–420 | Cite as

Optimal management of immune-related adverse events resulting from treatment with immune checkpoint inhibitors: a review and update

  • Hiroki Nagai
  • Manabu Muto
Invited Review Article


Over the last two decades, molecular-targeted agents have become mainstream treatment for many types of malignancies and have improved the overall survival of patients. However, most patients eventually develop resistance to these targeted therapies. Recently, immunotherapies such as immune checkpoint inhibitors have revolutionized the treatment paradigm for many types of malignancies. Immune checkpoint inhibitors have been approved for treatment of melanoma, non-small cell lung cancer, renal cell carcinoma, head and neck squamous cell carcinoma, Hodgkin’s lymphoma, bladder cancer and gastric cancer. However, oncologists have been faced with immune-related adverse events caused by immune checkpoint inhibitors; these are generally mild but can be fatal in some cases. Because immune checkpoint inhibitors have distinct toxicity profiles from those of chemotherapy or targeted therapy, many oncologists are not familiar with the principles for optimal management of immune-related adverse events, which require early recognition and appropriate treatment without delay. To achieve this, oncologists must educate patients and health-care workers, develop checklists of appropriate tests for immune-related adverse events and collaborate closely with organ specialists. Clinical questions that remain include whether immune checkpoint inhibitors should be administered to patients with autoimmune disease and whether patients for whom immune-related adverse events lead to delays in immunotherapy should be retreated. In addition, the predicted use of combination immunotherapies in the near future means that oncologists will face a higher incidence and severity of immune-related adverse events. This review provides an overview of the optimal management of immune-related adverse events attributed to immune checkpoint inhibitors.


Immune-related adverse events Immune checkpoint inhibitor Organ specialists Corticosteroid Immunomodulatory/immunosuppressive agents 


Complaince with ethical standards

Conflict of interest

None of the authors of this study declared conflict of interest.


  1. 1.
    Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330CrossRefPubMedGoogle Scholar
  4. 4.
    Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Carbone DP, Reck M, Paz-Ares L et al (2017) First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 376(25):2415–2426CrossRefPubMedGoogle Scholar
  8. 8.
    Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833CrossRefPubMedGoogle Scholar
  9. 9.
    Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265CrossRefPubMedGoogle Scholar
  10. 10.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Younes A, Santoro A, Shipp M et al (2016) Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol 17:1283–1294CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rosenberg JE, Hoffman-Censits J, Powles T et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–1920CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bellmunt J, de Wit R, Vaughn DJ et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376(11):1015–1026CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ferris RL, Blumenschein G Jr, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kang YK, Boku N, Satoh T et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10111):2461–2471CrossRefPubMedGoogle Scholar
  16. 16.
    Wolchok JD, Saenger Y (2008) The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13:2–9CrossRefPubMedGoogle Scholar
  17. 17.
    Minkis K, Garden BC, Wu S et al (2013) The risk of rash associated with ipilimumab in patients with cancer: a systematic review of the literature and meta-analysis. J Am Acad Dermatol 69(3):e121–e128CrossRefPubMedGoogle Scholar
  18. 18.
    Abdel-Rahman O, El Halawani H, Fouad M (2015) Risk of cutaneous toxicities in patients with solid tumors treated with immune checkpoint inhibitors: a meta-analysis. Future Oncol 11:2471–2484CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng R, Cooper A, Kench J et al (2015) Ipilimumab-induced toxicities and the gastroenterologist. J Gastroenterol Hepatol 30(4):657–666CrossRefPubMedGoogle Scholar
  20. 20.
    Di Giacomo AM, Danielli R, Guidoboni M et al (2009) Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother 58(8):1297–1306CrossRefPubMedGoogle Scholar
  21. 21.
    Gentile NM, D’Souza A, Fujii LL et al (2013) Association between ipilimumab and celiac disease. Mayo Clin Proc 88(4):414–417CrossRefPubMedGoogle Scholar
  22. 22.
    Ryder M, Callahan M, Postow MA et al (2014) Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer 21(2):371–381CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Albarel F, Gaudy C, Castinetti F et al (2015) Long-term follow-up of ipilimumab-induced hypophysitis, a common adverse event of the anti-CTLA-4 antibody in melanoma. Eur J Endocrinol 172(2):195–204CrossRefPubMedGoogle Scholar
  24. 24.
    Gaudy C, Clévy C, Monestier S et al (2015) Anti-PD1 pembrolizumab can induce exceptional fulminant type 1 diabetes. Diabetes Care 38(11):e182–e183CrossRefPubMedGoogle Scholar
  25. 25.
    Barjaktarevic IZ, Qadir N, Suri A et al (2013) Organizing pneumonia as a side effect of ipilimumab treatment of melanoma. Chest 143(3):858–861CrossRefPubMedGoogle Scholar
  26. 26.
    Berthod G, Lazor R, Letovanec I et al (2012) Pulmonary sarcoid-like granulomatosis induced by ipilimumab. J Clin Oncol 30(17):e156–e159CrossRefPubMedGoogle Scholar
  27. 27.
    Thaipisuttikul I, Chapman P, Avila EK (2015) Peripheral neuropathy associated with ipilimumab: a report of 2 cases. J Immunother 38(2):77–79CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gaudy-Marqueste C, Monestier S, Franques J et al (2013) A severe case of ipilimumab-induced Guillain–Barré syndrome revealed by an occlusive enteric neuropathy: a differential diagnosis for ipilimumab-induced colitis. J Immunother 36(1):77–78CrossRefPubMedGoogle Scholar
  29. 29.
    Loochtan AI, Nickolich MS, Hobson-Webb LD (2015) Myasthenia gravis associated with ipilimumab and nivolumab in the treatment of small cell lung cancer. Muscle Nerve 52(2):307–308CrossRefPubMedGoogle Scholar
  30. 30.
    Bernardo SG, Moskalenko M, Pan M et al (2013) Elevated rates of transaminitis during ipilimumab therapy for metastatic melanoma. Melanoma Res 23(1):47–54CrossRefPubMedGoogle Scholar
  31. 31.
    Kleiner DE, Berman D (2012) Pathologic changes in ipilimumab-related hepatitis in patients with metastatic melanoma. Dig Dis Sci 57(8):2233–2240CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Voskens C, Cavallaro A, Erdmann M et al (2012) Anti-cytotoxic T-cell lymphocyte antigen-4-induced regression of spinal cord metastases in association with renal failure, atypical pneumonia, vision loss, and hearing loss. J Clin Oncol 30(33):e356–e357CrossRefPubMedGoogle Scholar
  33. 33.
    Fadel F, Karoui EIK, Knebelmann B (2009) Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 361(2):211–212CrossRefPubMedGoogle Scholar
  34. 34.
    Izzedine H, Gueutin V, Gharbi C et al (2014) Kidney injuries related to ipilimumab. Invest New Drugs 32(4):769–773CrossRefPubMedGoogle Scholar
  35. 35.
    Ahmad S, Lewis M, Corrie P et al (2012) Ipilimumab-induced thrombocytopenia in a patient with metastatic melanoma. J Oncol Pharm Pract 18(2):287–292CrossRefPubMedGoogle Scholar
  36. 36.
    Akhtari M, Waller EK, Jaye DL et al (2009) Neutropenia in a patient treated with ipilimumab (anti-CTLA-4 antibody). J Immunother 32(3):322–324CrossRefPubMedGoogle Scholar
  37. 37.
    Du Rusquec P, Saint-Jean M, Brocard A et al (2014) Ipilimumab-induced autoimmune pancytopenia in a case of metastatic melanoma. J Immunother 37(6):348–350CrossRefPubMedGoogle Scholar
  38. 38.
    Chan MMK, Kefford RF, Carlino M et al (2015) Arthritis and tenosynovitis associated with the anti-PD1 antibody pembrolizumab in metastatic melanoma. J Immunother 38(1):37–39CrossRefPubMedGoogle Scholar
  39. 39.
    Hunter G, Voll C, Robinson CA (2009) Autoimmune inflammatory myopathy after treatment with ipilimumab. Can J Neurol Sci 36(4):518–520CrossRefPubMedGoogle Scholar
  40. 40.
    Läubli H, Balmelli C, Bossard M et al (2015) Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J Immunother Cancer 3(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Geisler BP, Raad RA, Esaian D et al (2015) Apical ballooning and cardiomyopathy in a melanoma patient treated with ipilimumab: a case of takotsubo-like syndrome. J Immunother Cancer 3(1):4CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Miserocchi E, Cimminiello C, Mazzola M et al (2015) New-onset uveitis during CTLA-4 blockade therapy with ipilimumab in metastatic melanoma patient. Can J Ophthalmol 50(1):e2–e4CrossRefPubMedGoogle Scholar
  43. 43.
    Weber JS, Hodi FS, Wolchok JD et al (2017) Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol 35(7):785–792CrossRefPubMedGoogle Scholar
  44. 44.
    Khunger M, Rakshit S, Pasupuleti V et al (2017) Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials. Chest 152(2):271–281CrossRefPubMedGoogle Scholar
  45. 45.
    Pillai RN, Behera M, Owonikoko TK et al (2018) Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: a systematic analysis of the literature. Cancer 124(2):271–277CrossRefPubMedGoogle Scholar
  46. 46.
    Wolchok JD, Neyns B, Linette G et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11(2):155–164CrossRefPubMedGoogle Scholar
  47. 47.
    Phan GQ, Yang JC, Sherry RM et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Freeman-Keller M, Kim Y, Cronin H et al (2016) Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res 22(4):886–894CrossRefPubMedGoogle Scholar
  49. 49.
    Champiat S, Lambotte O, Barreau E et al (2016) Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol 27(4):559–574CrossRefPubMedGoogle Scholar
  50. 50.
    Bristol-Meyers Squibb: Yervoy (ipilimumab): Immune-mediated adverse reaction management guide. Accessed 6 Mar 2018
  51. 51.
    Horvat TZ, Adel NG, Dang T-O et al (2015) Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at memorial sloan kettering cancer center. J Clin Oncol 33(28):3193–3198CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Weber JS, Kähler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697CrossRefPubMedGoogle Scholar
  53. 53.
    Weber JS, Dummer R, de Pril V et al (2013) Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer 119(9):1675–1682CrossRefPubMedGoogle Scholar
  54. 54.
    Kronbichler A, Jayne DRW, Mayer G (2015) Frequency, risk factors and prophylaxis of infection in ANCA-associated vasculitis. Eur J Clin Invest 45(3):346–368CrossRefPubMedGoogle Scholar
  55. 55.
    Pedersen M, Andersen R, Nørgaard P et al (2014) Successful treatment with ipilimumab and interleukin-2 in two patients with metastatic melanoma and systemic autoimmune disease. Cancer Immunol Immunother 63(12):1341–1346CrossRefPubMedGoogle Scholar
  56. 56.
    Kyi C, Carvajal RD, Wolchok JD et al (2014) Ipilimumab in patients with melanoma and autoimmune disease. J Immunother Cancer 2(1):35CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bostwick AD, Salama AK, Hanks BA (2015) Rapid complete response of metastatic melanoma in a patient undergoing ipilimumab immunotherapy in the setting of active ulcerative colitis. J Immunother Cancer 3:19CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Weinstock C, Singh H, Maher VE et al (2017) FDA analysis of patients with baseline autoimmune diseases treated with PD-1/PD-L1 immunotherapy agents. J Clin Oncol.
  59. 59.
    Leonardi GC, Gainor JF, Azimi RS et al (2017) Use of PD-1 pathway inhibitors among patients with non-small cell lung cancer (NSCLC) and preexisting autoimmune disorders. J Clin Oncol.
  60. 60.
    Danlos FX, Voisin AL, Dyevre V et al (2018) Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur J Cancer. 91:21–29CrossRefPubMedGoogle Scholar
  61. 61.
    Santini FC, Rizvi H, Wilkins O et al (2017) Safety of retreatment with immunotherapy after immune-related toxicity in patients with lung cancers treated with anti-PD(L)-1 therapy. J Clin Oncol.
  62. 62.
    Pollack MH, Betof A, Dearden H et al (2018) Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol 29(1):250–255CrossRefPubMedGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2018

Authors and Affiliations

  1. 1.Department of Clinical Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations