International Journal of Clinical Oncology

, Volume 22, Issue 3, pp 585–592 | Cite as

Plasma DNA methylation of p16 and shp1 in patients with B cell non-Hodgkin lymphoma

  • Kai Ding
  • Xiaoshuang Chen
  • Yihao Wang
  • Hui Liu
  • Wenjing Song
  • Lijuan Li
  • Guojin Wang
  • Jia Song
  • Zonghong Shao
  • Rong Fu
Original Article
  • 121 Downloads

Abstract

Background

Early diagnosis and treatment of non-Hodgkin lymphoma (NHL) are progressively important. It has been shown that aberrant promoter methylation contributes to the development and progression of lymphoma. We tried to explore the effect of methylation of p16 and shp1 genes in plasma in the diagnosis of B-NHL patients.

Methods

The methylation of p16 and shp1 genes in plasma were detected by methylation specific polymerase chain reaction in 103 patients with B-NHL, and compared with peripheral blood leukocytes (PBLs) and formaldehyde-fixed paraffin-embedded (FFPE) tumor tissues.

Results

The results showed that methylation frequency of p16 in plasma, PBLs, and FFPE tumor tissues of newly diagnosed B-NHL patients were 37% (27/73), 16% (12/73) and 39% (16/41), whereas those of shp1 were 47% (34/73), 25% (18/73) and 63% (26/41). High methylation consistency of p16/shp1 between plasma and FFPE tumor tissues were revealed (the values of kappa: 0.84, 0.80). Moreover, there were a higher frequency of methylated p16 in all three samples in patients with B symptoms and lower platelet count (<100 × 109/L), as well as in patients with stage III/IV in plasma and FFPE tumor tissues. Meanwhile, higher frequency of methylated shp1 was observed in patients with higher LDH level in all three samples.

Conclusion

Methylation of p16/shp1 in plasma can represent their methylation status in tumor tissues, and may be promising biomarkers in early diagnosis and prognosis evaluation in B-NHL.

Keywords

Non-Hodgkin Lymphoma B cell Plasma DNA p16 shp1 Methylation 

References

  1. 1.
    Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437CrossRefPubMedGoogle Scholar
  2. 2.
    Maunakea AK, Chepelev I, Zhao K (2010) Epigenome mapping in normal and disease states. Circ Res 107:327–339CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sato H, Oka T, Shinnou Y et al (2010) Multi-step aberrant CpG island hyper-methylation is associated with the progression of adult T-cell leukemia/lymphoma. Am J Pathol 176:402–415CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shi H, Guo J, Duff DJ et al (2007) Discovery of novel epigenetic markers in non-Hodgkin’s lymphoma. Carcinogenesis 28:60–70CrossRefPubMedGoogle Scholar
  5. 5.
    Eberle FC, Rodriguez-Canales J, Wei L et al (2011) Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica 96:558–566CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Amara K, Trimeche M, Ziadi S et al (2008) Prognostic significance of aberrant promoter hypermethylation of CpG islands in patients with diffuse large B-cell lymphomas. Ann Oncol 19:1774–1786CrossRefPubMedGoogle Scholar
  7. 7.
    Hagiwara K, Li Y, Kinoshita T et al (2010) Aberrant DNA methylation of the p57KIP2 gene is a sensitive biomarker for detecting minimal residual disease in diffuse large B cell lymphoma. Leuk Res 34:50–54CrossRefPubMedGoogle Scholar
  8. 8.
    Stewart DJ, Issa JP, Kurzrock R et al (2009) Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 15:3881–3888CrossRefPubMedGoogle Scholar
  9. 9.
    Villuendas R, Sanchez-Beato M, Koh JC et al (1998) Loss of p16/INK4A protein expression in non-Hodgkin’s lymphomas is a frequent finding associated with tumor progression. Am J Pathol 153:887–897CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Oka T, Ouchida M, Koyama M (2002) Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res 62:6390–6394PubMedGoogle Scholar
  11. 11.
    Oka T, Yoshino T, Hayashi K et al (2001) Reduction of hematopoietic cell-specific tyrosine phosphatase SHP-1 gene expression in natural killer cell lymphoma and various types of lymphomas/leukemias: combination analysis with cDNA expression array and tissue microarray. Am J Pathol 159:1495–1505CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25(5):579–586CrossRefPubMedGoogle Scholar
  13. 13.
    El Messaoudi S, Rolet F, Mouliere F et al (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230CrossRefPubMedGoogle Scholar
  14. 14.
    Krajnović M, Radojković M, Davidović R et al (2013) Prognostic significance of epigenetic inactivation of p16, p15, MGMT and DAPK genes in follicular lymphoma. Med Oncol 30:441CrossRefPubMedGoogle Scholar
  15. 15.
    Krajnović M, Radojković M, Davidović R et al (2007) Quantification of circulating plasma DNA fragments as tumor markers in patients with esophageal cancer. Anticancer Res 27:2737–2742Google Scholar
  16. 16.
    Liggett TE, Melnikov A, Yi Q et al (2011) Distinctive DNA-methylation patterns of cell-free plasma DNA in women with malignant ovarian tumors. Gynecol Oncol 120:113–120CrossRefPubMedGoogle Scholar
  17. 17.
    Sturgeon SR, Balasubramanian R, Schairer C et al (2012) Detection of promoter methylation of tumor suppressor genes in serum DNA of breast cancer cases and benign breast disease controls. Epigenetics 7:1258–1267CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ellinger J, Albers P, Perabo FG et al (2009) CpG island hypermethylation of cell-free circulating serum DNA in patients with testicular cancer. J Urol 182:324–329CrossRefPubMedGoogle Scholar
  19. 19.
    Hoffmann AC, Vallböhmer D, Prenzel K et al (2009) Methylated DAPK and APC promoter DNA detection in peripheral blood is significantly associated with apparent residual tumor and outcome. J Cancer Res Clin Oncol 135:1231–1237CrossRefPubMedGoogle Scholar
  20. 20.
    Lee TH, Montalvo L, Chrebtow V et al (2001) Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion 41:276–282CrossRefPubMedGoogle Scholar
  21. 21.
    Li L, Choi JY, Lee KM et al (2012) DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. J Epidemiol 22:384–394CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Teschendorff AE, Menon U, Gentry-Maharaj A et al (2009) An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One 4:e8274CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pedersen KS, Bamlet WR, Oberg AL et al (2011) Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS One 6:e18223CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang L, Aakre JA, Jiang R et al (2010) Methylation markers for small cell lung cancer in peripheral blood leukocyte DNA. J Thorac Oncol 5:778–785CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Deligezer U, Yaman F, Erten N et al (2003) Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clin Chim Acta 335:89–94CrossRefPubMedGoogle Scholar
  26. 26.
    Cosialls AM, Santidrián AF, Coll-Mulet L et al (2012) Epigenetic profile in chronic lymphocytic leukemia using methylation-specific multiplex ligation-dependent probe amplification. Epigenomics 4:491–501CrossRefPubMedGoogle Scholar
  27. 27.
    Tsirigotis P, Pappa V, Labropoulos S et al (2006) Mutational and methylation analysis of the cyclin-dependent kinase 4 inhibitor (p16INK4A) gene in chronic lymphocytic leukemia. Eur J Haematol 76:230–236CrossRefPubMedGoogle Scholar
  28. 28.
    Zainuddin N, Kanduri M, Berglund M et al (2011) Quantitative evaluation of p16INK4a promoter methylation using pyrosequencing in de novo diffuse large B-cell lymphoma. Leuk Res 35:438–443CrossRefPubMedGoogle Scholar
  29. 29.
    Shiozawa E, Takimoto M, Makino R et al (2006) Hypermethylation of CpG islands in p16 as a prognostic factor for diffuse large B-cell lymphoma in a high-risk group. Leuk Res 30:859–867CrossRefPubMedGoogle Scholar
  30. 30.
    Kim SS, Choi YH, Han CW et al (2009) DNA methylation profiles of MGMT, DAPK1, hMLH1, CDH1, SHP1, and HIC1 in B-Cell lymphomas. Korean J Pathol 43:420–427CrossRefGoogle Scholar
  31. 31.
    Koyama M, Oka T, Ouchida M et al (2003) Activated proliferation of B-cell lymphomas/leukemias with the SHP1 gene silencing by aberrant CpG methylation. Lab Invest 83:1849–1858CrossRefPubMedGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2017

Authors and Affiliations

  • Kai Ding
    • 1
  • Xiaoshuang Chen
    • 1
  • Yihao Wang
    • 1
  • Hui Liu
    • 1
  • Wenjing Song
    • 2
  • Lijuan Li
    • 1
  • Guojin Wang
    • 1
  • Jia Song
    • 1
  • Zonghong Shao
    • 1
  • Rong Fu
    • 1
  1. 1.Department of HematologyTianjin Medical University General HospitalTianjinPeople’s Republic of China
  2. 2.Department of PathologyTianjin Medical University General HospitalTianjinPeople’s Republic of China

Personalised recommendations