Advertisement

International Journal of Clinical Oncology

, Volume 22, Issue 2, pp 222–228 | Cite as

The sesquiterpene α-bisabolol in the adipocyte−cancer desmoplastic crosstalk: does it have an action on epithelial−mesenchymal transition mechanisms?

  • Salvatore ChirumboloEmail author
  • Geir Bjørklund
Review Article

Abstract

Alpha-bisabolol is a plant-derived sesquiterpene alcohol recently associated with a supposed anti-cancer action due to its ability to induce BID-related apoptosis. The molecule, which enters the cell through lipid rafts, may also interact with kisspeptin receptor 1, which has recently been associated with tumor mobility and invasiveness. This evidence suggests the possibility that α-bisabolol might act on the epithelial−mesenchymal transition mechanism, closely associated with the desmoplastic reaction of adipose tissue surrounding a pancreatic ductal adenocarcinoma. This review addresses the issue on the basis of the most recent reported literature in the field.

Keywords

Alpha-bisabolol EMT mechanism Pancreas cancer Adipocyte 

Notes

Compliance with ethical standards

Conflict of interest

The authors of the present manuscript declare that they have no conflict of interest. The authors declare that the article is their original work, has not received prior publication and is not under consideration for publication elsewhere. On behalf of all co-authors, the corresponding author shall bear full responsibility for the submission. The research conducted in this paper has not been submitted for publication and has not been published in whole or in part elsewhere. The authors attest to the fact that the authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission to the International Journal of Clinical Oncology.

References

  1. 1.
    Bhatia SP, McGinty D, Letizia CS et al (2008) Fragrance material review on alpha-bisabolol. Food Chem Toxicol 46(S11):S72–S76CrossRefPubMedGoogle Scholar
  2. 2.
    Orav A, Raal A, Arak E (2010) Content and composition of the essential oil of Chamomilla recutita (L.) Rauschert from some European countries. Nat Prod Res 24(1):48–55CrossRefPubMedGoogle Scholar
  3. 3.
    Presibella MM, De Biaggi C, da Silva Belletti KM et al (2006) Comparison of chemical constituents of Chamomilla recutita (L.) Rauschert essential oil and its anti-chemotactic activity. Braz Arch Biol Technol 49(5):717–724CrossRefGoogle Scholar
  4. 4.
    Tolouee M, Alinezhad S, Saberi R et al (2010) Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int J Food Microbiol 139(3):127–133CrossRefPubMedGoogle Scholar
  5. 5.
    Uno M, Kokuryo T, Yokoyama Y et al (2016) α-Bisabolol inhibits invasiveness and motility in pancreatic cancer through KISS1R activation. Anticancer Res 36(2):583–589PubMedGoogle Scholar
  6. 6.
    Song GQ, Zhao Y (2015) Kisspeptin-10 inhibits the migration of breast cancer cells by regulating epithelial-mesenchymal transition. Oncol Rep 33(2):669–674PubMedGoogle Scholar
  7. 7.
    Bochet L, Lehuédé C, Dauvillier S et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73(18):5657–5668CrossRefPubMedGoogle Scholar
  8. 8.
    Zoico E, Darra E, Rizzatti V, Budui S, Franceschetti G, Mazzali G, Rossi AP, Fantin F, Menegazzi M, Cinti S, Zamboni M (2016) Adipocytes Wnt5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget 7(15):20223–20235PubMedPubMedCentralGoogle Scholar
  9. 9.
    An J, Lv J, Li A, Qiao J, Fang L, Li Z, Li B, Zhao W, Chen H, Wang L (2015) Constitutive expression of Bcl-2 induces epithelial-Mesenchymal transition in mammary epithelial cells. BMC Cancer 15:476CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Darra E, Abdel-Azeim S, Manara A (2008) Insight into the apoptosis-inducing action of alpha-bisabolol towards malignant tumor cells: involvement of lipid rafts and Bid. Arch Biochem Biophys 476(2):113–123CrossRefPubMedGoogle Scholar
  11. 11.
    Song J (2007) EMT or apoptosis: a decision for TGF-beta. Cell Res 17(4):289–290CrossRefPubMedGoogle Scholar
  12. 12.
    Liang Y, Liu HH, Chen YJ et al (2014) Antitumor activity of the protein and small molecule component fractions from Agrocybe aegerita through enhancement of cytokine production. J Med Food 17(4):439–446CrossRefPubMedGoogle Scholar
  13. 13.
    Lee Y, Jung WH, Koo JS (2015) Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res Treat 153(2):323–335CrossRefPubMedGoogle Scholar
  14. 14.
    Zoico E, Darra E et al (2006) Adipocytes Wnt5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget. doi: 10.18632/oncotarget.7936 (in press) Google Scholar
  15. 15.
    Tang L, Zhu H, Yang X, Xie F, Peng J, Jiang D, Xie J, Qi M, Yu L (2016) Shizukaol D, a Dimeric Sesquiterpene Isolated from Chloranthus serratus, represses the growth of human liver cancer cells by modulating Wnt signalling pathway. PLoS One 11(3):e0152012CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yeo SK, Ali AY, Hayward OA et al (2016) β-Bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines. Phytother Res 30(3):418–425CrossRefPubMedGoogle Scholar
  17. 17.
    Chirumbolo S (2015) Alpha-bisabolol, not a matter for cancer therapy. Commentary: “Research on the immunosuppressive activity of ingredients contained in sunscreens”. Front Pharmacol 6:96CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cavalieri E, Bergamini C, Mariotto S et al (2009) Involvement of mitochondrial permeability transition pore opening in α-bisabolol induced apoptosis. FEBS J 276(15):3990–4000CrossRefPubMedGoogle Scholar
  19. 19.
    Bulteau AL, Bayot A (2011) Mitochondrial proteases and cancer. Biochim Biophys Acta 1807(86):595–601CrossRefPubMedGoogle Scholar
  20. 20.
    Pinti M, Gibellini L, Liu Y et al (2015) Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 72(24):4807–4824CrossRefPubMedGoogle Scholar
  21. 21.
    Hamzeloo-Moghadam M, Aghaei M, Fallahian F et al (2015) Britannin, a sesquiterpene lactone, inhibits proliferation and induces apoptosis through the mitochondrial signaling pathway in human breast cancer cells. Tumour Biol 38(2):1191–1198CrossRefGoogle Scholar
  22. 22.
    Hua P, Zhang G, Zhang Y et al (2016) Costunolide induces G1/S phase arrest and activates mitochondrial-mediated apoptotic pathways in SK-MES 1 human lung squamous carcinoma cells. Oncol Lett 11(4):2780–2786PubMedPubMedCentralGoogle Scholar
  23. 23.
    Chan ML, Liang JW, Hsu LC et al (2015) Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult. Naunyn Schmiedebergs Arch Pharmacol 388(11):1223–1236CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang S, Won YK, Ong CN et al (2005) Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents 5(3):239–249CrossRefPubMedGoogle Scholar
  25. 25.
    Gach K, Długosz A, Janecka A (2015) The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch Pharmacol 388(5):477–486CrossRefPubMedGoogle Scholar
  26. 26.
    Cha YH, Yook JI, Kim HS et al (2015) Catabolic metabolism during cancer EMT. Arch Pharm Res 38(3):313–320CrossRefPubMedGoogle Scholar
  27. 27.
    Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356(2 Pt A):156–164CrossRefPubMedGoogle Scholar
  28. 28.
    Liu W, Beck BH, Vaidya KS et al (2014) Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Res 74(3):954–963CrossRefPubMedGoogle Scholar
  29. 29.
    Chadwick M, Trewin H, Gawthrop F et al (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14(6):12780–12805CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kochhar S, Martin FP (2015) Gut microbiota metabolism in nutrition, health and disease in “Metabolomics and gut microbiota in nutrition and disease”. Humana Press, Heidelberg, pp 261–298Google Scholar
  31. 31.
    Bode AM, Dong Z (2015) Toxic phytochemicals and their potential risks for human cancer. Cancer Prev Res (Phila) 8(1):1–8CrossRefGoogle Scholar
  32. 32.
    Castelli MV, Lodeyro AP, Malheiros A et al (2005) Inhibition of the mitochondrial ATP synthesis by polygodial, a naturally occurring dialdehyde unsaturated sesquiterpene. Biochem Pharmacol 70(1):82–89CrossRefPubMedGoogle Scholar
  33. 33.
    Lunde CS, Kubo I (2000) Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob Agents Chemother 44(7):1943–1953CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Leslie EM, Mao Q, Oleschuk CJ et al (2001) Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids. Mol Pharmacol 59(5):1171–1180PubMedGoogle Scholar
  35. 35.
    Wictome M, Starling AP, Sharma RP et al (1993) Inhibition of the Ca(2+)-ATPase by sesquiterpene lactones. Biochem Soc Trans 21(4):348SCrossRefPubMedGoogle Scholar
  36. 36.
    Lamb R, Bonuccelli G, Ozsvári B et al (2015) Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: understanding WNT/FGF-driven anabolic signaling. Oncotarget 6(31):30453–30471PubMedPubMedCentralGoogle Scholar
  37. 37.
    Proksch S, Steinberg T, Stampf S et al (2012) Crosstalk on cell behavior in interactive cocultures of hMSCs with various oral cell types. Tissue Eng Part A 18(23):2601–2610CrossRefPubMedGoogle Scholar
  38. 38.
    Shimizu Y, Sato S (2015) In vitro study on regeneration of periodontal tissue microvasculature using human dedifferentiated fat cells. J Periodontol 86(1):129–136CrossRefPubMedGoogle Scholar
  39. 39.
    Jeong HJ, Park SW, Kim H et al (2010) Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells. Biochem Biophys Res Commun 392(4):520–525CrossRefPubMedGoogle Scholar
  40. 40.
    Hsia LT, Ashley N, Ouaret D et al (2016) Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers. Proc Natl Acad Sci USA 113(15):E2162–E2171CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kou L, Lu XW, Wu MK et al (2014) The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes. Biochem Biophys Res Commun 444(4):543–548CrossRefPubMedGoogle Scholar
  42. 42.
    Kim IH, Kim SW, Kim SH et al (2012) Parthenolide-induced apoptosis of hepatic stellate cells and anti-fibrotic effects in an in vivo rat model. Exp Mol Med 44(7):448–456CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cui B, Zhang S, Chen L et al (2013) Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res 73(12):3649–3660CrossRefPubMedGoogle Scholar
  44. 44.
    Matsuyama M, Nomori A, Nakakuni K et al (2014) Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem 289(45):31526–31533CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang R, Hong J, Liu R et al (2014) SFRP5 acts as a mature adipocyte marker but not as a regulator in adipogenesis. J Mol Endocrinol 53(3):405–415CrossRefPubMedGoogle Scholar
  46. 46.
    Negmadjanov U, Godic Z, Rizvi F et al (2015) TGF-β1-mediated differentiation of fibroblasts is associated with increased mitochondrial content and cellular respiration. PLoS One 10(4):e0123046CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jabeen S, Qureshi MZ, Javed Z et al (2016) Kisspeptin mediated signaling in cancer. Curr Top Med Chem 16(22):2471–2476CrossRefPubMedGoogle Scholar
  48. 48.
    Cvetković D, Babwah AV, Bhattacharya M (2013) Kisspeptin/KISS1R system in breast cancer. J Cancer 4(8):653–661CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zajac M, Law J, Cvetkovic DD et al (2011) GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One 6(6):e21599CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Huma T, Wang Z, Rizak J et al (2013) Kisspeptin-10 modulates the proliferation and differentiation of the rhesus monkey derived stem cell line: R366.4. Sci World J 2013:135470CrossRefGoogle Scholar
  51. 51.
    Darra E, Lenaz G, Cavalieri E et al (2007) Alpha-bisabolol: unexpected plant-derived weapon in the struggle against tumour survival? Ital J Biochem 56(4):323–328PubMedGoogle Scholar
  52. 52.
    Chen W, Hou J, Yin Y et al (2010) Alpha-Bisabolol induces dose- and time-dependent apoptosis in HepG2 cells via a Fas- and mitochondrial-related pathway, involves p53 and NFkappaB. Biochem Pharmacol 80(2):247–254CrossRefPubMedGoogle Scholar
  53. 53.
    Kumar M, Allison DF, Baranova NN et al (2013) NF-κB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS One 8(7):e68597CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chirumbolo S, Bjørklund G (2016) Can Wnt5a and Wnt non-canonical pathways really mediate adipocyte de-differentiation in a tumour microenvironment? Eur J Cancer 64:96–100CrossRefPubMedGoogle Scholar
  55. 55.
    Golzar F, Javanmard SH, Bahrambeigi V et al (2015) The effect of Kisspeptin-10 on mesenchymal stem cells migration in vitro and in vivo. Adv Biomed Res 4:20CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rhee KJ, Lee JI, Eom YW (2015) mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci 16(12):30015–30033CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Satoh K, Hamada S, Shimosegawa T (2015) T. Involvement of epithelial to mesenchymal transition in the development of pancreatic ductal adenocarcinoma. J Gastroenterol 50(2):140–146CrossRefPubMedGoogle Scholar
  58. 58.
    Ji K, Ye L, Ruge F, Hargest R et al (2014) Implication of metastasis suppressor gene, Kiss-1 and its receptor Kiss-1R in colorectal cancer. BMC Cancer 14:723CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ji K, Ye L, Mason MD et al (2013) The Kiss-1/Kiss-1R complex as a negative regulator of cell motility and cancer metastasis (review). Int J Mol Med 32(4):747–754PubMedGoogle Scholar
  60. 60.
    Tian L, Lu ZP, Cai BB et al (2016) Activation of pancreatic stellate cells involves an EMT-like process. Int J Oncol 48(29):783–792PubMedGoogle Scholar
  61. 61.
    Bubici C, Papa S, Pham CG et al (2006) The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol 21(1):69–80PubMedGoogle Scholar
  62. 62.
    Kim S, Jung E, Kim JH et al (2011) D. Inhibitory effects of (-)-α-bisabolol on LPS-induced inflammatory response in RAW264.7 macrophages. Food Chem Toxicol 49(10):2580–2585CrossRefPubMedGoogle Scholar
  63. 63.
    Jing YY, Han ZP, Sun K et al (2012) Toll-like receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced by lipopolysaccharide. BMC Med 10:98CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Li H, Li Y, Liu D et al (2014) LPS promotes epithelial-mesenchymal transition and activation of TLR4/JNK signaling. Tumour Biol 35(10):10429–10435CrossRefPubMedGoogle Scholar
  65. 65.
    Chirumbolo S, Franceschetti G, Zoico E et al (2014) LPS response pattern of inflammatory adipokines in an in vitro 3T3-L1 murine adipocyte model. Inflamm Res 63(6):495–507CrossRefPubMedGoogle Scholar
  66. 66.
    Chirumbolo S, Rossi AP, Rizzatti V et al (2015) Iron primes 3T3-L1 adipocytes to a TLR4-mediated inflammatory response. Nutrition 31(10):1266–1274CrossRefPubMedGoogle Scholar
  67. 67.
    Wu Y, Tang L (2016) Bcl-2 family proteins regulate apoptosis and epithelial to mesenchymal transition by calcium signals. Curr Pharm Des 22(30):4700–4704CrossRefPubMedGoogle Scholar
  68. 68.
    Smaili SS, Hsu YT, Youle RJ et al (2000) Mitochondria in Ca2+ signaling and apoptosis. J Bioenerg Biomembr 32(1):35–46CrossRefPubMedGoogle Scholar
  69. 69.
    Ouyang F, Huang H, Zhang M et al (2016) HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int J Mol Med 37(3):679–689PubMedPubMedCentralGoogle Scholar
  70. 70.
    Magnelli L, Caldini R, Schiavone N et al (2010) Differentiating and apoptotic dose-dependent effects in (−)-alpha-bisabolol-treated human endothelial cells. J Nat Prod 73(4):523–526CrossRefPubMedGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2016

Authors and Affiliations

  1. 1.Department of Neurological and Movement SciencesUniversity of VeronaVeronaItaly
  2. 2.CONEM Scientific SecretaryMo i RanaNorway
  3. 3.Council for Nutritional and Environmental MedicineMo i RanaNorway

Personalised recommendations