Advertisement

International Journal of Clinical Oncology

, Volume 21, Issue 5, pp 819–826 | Cite as

The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma

  • Daisuke SanoEmail author
  • Nobuhiko Oridate
Invited Review Article

Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Recently, the incidence of oropharyngeal cancer (OPC) has increased markedly in comparison to that of HNSCC, which is associated with the use of tobacco or alcohol or both. This increase has resulted mainly from the global rise in the number of human papillomavirus (HPV)-related oropharyngeal cancers (HPV-OPCs). HPV-OPC has several unique characteristics, including presentation in younger patients, better response rates to treatment, and better prognosis compared to alcohol- and smoking-related HNSCC. HPV infection status is now an independent prognostic factor for survival in patients with OPC. In general, HPV oncoproteins E6 and E7 are the primary viral factors responsible for the initiation and progression of HPV-related cancers via the inactivation of p53 and pRb. However, alterations in additional factors, including genomic instability, HPV DNA integration, and epigenetic alterations, could be equally important for neoplastic transformation and tumor progression. The impact of genomic instability and external environmental factors on the initiation of cervical cancer development through high-risk HPV infection has been well characterized, although less is known about the mechanism underlying HPV-induced carcinogenesis in HNSCC. This review provides an overview of the biology and molecular mechanisms of HPV-related cancers, including a particular focus on several recent studies on the comprehensive characterization of genomic alterations in HPV-associated HNSCC.

Keywords

Head and neck squamous cell carcinoma Human papillomavirus (HPV)-related oropharyngeal cancers HPV oncoproteins Genomic instability HPV DNA integration 

Notes

Acknowledgements

The authors received no specific support or funding for this work.

Compliance with ethical standards

Conflict of interest

We, the authors, declare that we have no competing interests.

References

  1. 1.
    Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917CrossRefPubMedGoogle Scholar
  2. 2.
    Marur S, D’Souza G, Westra WH et al (2010) HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 11:781–789CrossRefPubMedGoogle Scholar
  3. 3.
    Chaturvedi AK, Engels EA, Pfeiffer RM et al (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29:4294–4301CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tommasino M (2014) The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 26:13–21CrossRefPubMedGoogle Scholar
  5. 5.
    zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350CrossRefPubMedGoogle Scholar
  6. 6.
    Crosbie EJ, Einstein MH, Franceschi S et al (2013) Human papillomavirus and cervical cancer. Lancet 382:889–899CrossRefPubMedGoogle Scholar
  7. 7.
    de Villiers EM, Fauquet C, Broker TR et al (2004) Classification of papillomaviruses. Virology 324:17–27CrossRefPubMedGoogle Scholar
  8. 8.
    Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560CrossRefPubMedGoogle Scholar
  9. 9.
    Doorbar J (2005) The papillomavirus life cycle. J Clin Virol 32(suppl 1):S7–S15CrossRefPubMedGoogle Scholar
  10. 10.
    Hennessey PT, Westra WH, Califano JA (2009) Human papillomavirus and head and neck squamous cell carcinoma: recent evidence and clinical implications. J Dent Res 88:300–306CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kajiji S, Tamura RN, Quaranta V (1989) A novel integrin (alpha E beta 4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. EMBO J 8:673–680PubMedPubMedCentralGoogle Scholar
  12. 12.
    Shafti-Keramat S, Handisurya A, Kriehuber E et al (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77:13125–13135CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hamid NA, Brown C, Gaston K (2009) The regulation of cell proliferation by the papillomavirus early proteins. Cell Mol Life Sci 66:1700–1717CrossRefPubMedGoogle Scholar
  14. 14.
    Finzer P, Aguilar-Lemarroy A, Rosl F (2002) The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett 188:15–24CrossRefPubMedGoogle Scholar
  15. 15.
    Rautava J, Syrjanen S (2012) Biology of human papillomavirus infections in head and neck carcinogenesis. Head Neck Pathol 6(suppl 1):S3–S15CrossRefPubMedGoogle Scholar
  16. 16.
    Howie HL, Katzenellenbogen RA, Galloway DA (2009) Papillomavirus E6 proteins. Virology 384:324–334CrossRefPubMedGoogle Scholar
  17. 17.
    Wise-Draper TM, Wells SI (2008) Papillomavirus E6 and E7 proteins and their cellular targets. Front Biosci 13:1003–1017CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang A, Wang J, Zheng B et al (2004) Telomere attrition predominantly occurs in precursor lesions during in vivo carcinogenic process of the uterine cervix. Oncogene 23:7441–7447CrossRefPubMedGoogle Scholar
  19. 19.
    Spardy N, Duensing A, Hoskins EE et al (2008) HPV-16 E7 reveals a link between DNA replication stress, Fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res 68:9954–9963CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Maufort JP, Shai A, Pitot HC et al (2010) A role for HPV16 E5 in cervical carcinogenesis. Cancer Res 70:2924–2931CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Valle GF, Banks L (1995) The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol 76(pt 5):1239–1245CrossRefPubMedGoogle Scholar
  22. 22.
    Stoppler MC, Straight SW, Tsao G et al (1996) The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223:251–254CrossRefPubMedGoogle Scholar
  23. 23.
    Venuti A, Paolini F, Nasir L et al (2011) Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer 10:140CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kanodia S, Fahey LM, Kast WM (2007) Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets 7:79–89CrossRefPubMedGoogle Scholar
  25. 25.
    Ashrafi GH, Haghshenas M, Marchetti B et al (2006) E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer 119:2105–2112CrossRefPubMedGoogle Scholar
  26. 26.
    Stanley MA, Pett MR, Coleman N (2007) HPV: from infection to cancer. Biochem Soc Trans 35:1456–1460CrossRefPubMedGoogle Scholar
  27. 27.
    Ostor AG (1993) Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol 12:186–192CrossRefPubMedGoogle Scholar
  28. 28.
    Steenbergen RD, Snijders PJ, Heideman DA et al (2014) Clinical implications of (epi) genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer 14:395–405CrossRefPubMedGoogle Scholar
  29. 29.
    Ho GY, Bierman R, Beardsley L et al (1998) Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 338:423–428CrossRefPubMedGoogle Scholar
  30. 30.
    Dalstein V, Riethmuller D, Pretet JL et al (2003) Persistence and load of high-risk HPV are predictors for development of high-grade cervical lesions: a longitudinal French cohort study. Int J Cancer 106:396–403CrossRefPubMedGoogle Scholar
  31. 31.
    Pett M, Coleman N (2007) Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212:356–367CrossRefPubMedGoogle Scholar
  32. 32.
    Wentzensen N, Vinokurova S, von Knebel Doeberitz M (2004) Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64:3878–3884CrossRefPubMedGoogle Scholar
  33. 33.
    Duensing S, Lee LY, Duensing A et al (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97:10002–10007CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hu Z, Zhu D, Wang W et al (2015) Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet 47:158–163CrossRefPubMedGoogle Scholar
  35. 35.
    Shi Y, Li L, Hu Z et al (2013) A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12. Nat Genet 45:918–922CrossRefPubMedGoogle Scholar
  36. 36.
    Arias-Pulido H, Peyton CL, Joste NE et al (2006) Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J Clin Microbiol 44:1755–1762CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shulzhenko N, Lyng H, Sanson GF et al (2014) Menage a trois: an evolutionary interplay between human papillomavirus, a tumor, and a woman. Trends Microbiol 22:345–353CrossRefPubMedGoogle Scholar
  38. 38.
    Romanczuk H, Howley PM (1992) Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc Natl Acad Sci USA 89:3159–3163CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rusan M, Li YY, Hammerman PS (2015) Genomic landscape of human papillomavirus-associated cancers. Clin Cancer Res 21:2009–2019CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lu Q, Ma D, Zhao S (2012) DNA methylation changes in cervical cancers. Methods Mol Biol 863:155–176CrossRefPubMedGoogle Scholar
  41. 41.
    Duenas-Gonzalez A, Lizano M, Candelaria M et al (2005) Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer 4:38CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wentzensen N, Sherman ME, Schiffman M et al (2009) Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science. Gynecol Oncol 112:293–299CrossRefPubMedGoogle Scholar
  43. 43.
    Johannsen E, Lambert PF (2013) Epigenetics of human papillomaviruses. Virology 445:205–212CrossRefPubMedGoogle Scholar
  44. 44.
    Durst M, Gissmann L, Ikenberg H et al (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 80:3812–3815CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Syrjanen K, Syrjanen S, Lamberg M et al (1983) Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. Int J Oral Surg 12:418–424CrossRefPubMedGoogle Scholar
  46. 46.
    Mehanna H, Beech T, Nicholson T et al (2013) Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer–systematic review and meta-analysis of trends by time and region. Head Neck 35:747–755CrossRefPubMedGoogle Scholar
  47. 47.
    Rettig E, Kiess AP, Fakhry C (2015) The role of sexual behavior in head and neck cancer: implications for prevention and therapy. Expert Rev Anticancer Ther 15:35–49CrossRefPubMedGoogle Scholar
  48. 48.
    Ang KK, Harris J, Wheeler R et al (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363:24–35CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Poeta ML, Manola J, Goldwasser MA et al (2007) TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med 357:2552–2561CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sano D, Xie TX, Ow TJ et al (2011) Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. Clin Cancer Res 17:6658–6670CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Network TCGA (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature (Lond) 517:576–582CrossRefGoogle Scholar
  52. 52.
    Tinhofer I, Budach V, Saki M et al (2016) Targeted next-generation sequencing of locally advanced squamous cell carcinomas of the head and neck reveals druggable targets for improving adjuvant chemoradiation. Eur J Cancer 57:78–86CrossRefPubMedGoogle Scholar
  53. 53.
    Kimple RJ, Smith MA, Blitzer GC et al (2013) Enhanced radiation sensitivity in HPV-positive head and neck cancer. Cancer Res 73:4791–4800CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fakhry C, Westra WH, Li S et al (2008) Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 100:261–269CrossRefPubMedGoogle Scholar
  55. 55.
    Stransky N, Egloff AM, Tward AD et al (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333:1157–1160CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Agrawal N, Frederick MJ, Pickering CR et al (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333:1154–1157CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lewis JS Jr, Thorstad WL, Chernock RD et al (2010) p16 positive oropharyngeal squamous cell carcinoma: an entity with a favorable prognosis regardless of tumor HPV status. Am J Surg Pathol 34:1088–1096CrossRefPubMedGoogle Scholar
  58. 58.
    Jirawatnotai S, Hu Y, Michowski W et al (2011) A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature (Lond) 474:230–234CrossRefGoogle Scholar
  59. 59.
    Dok R, Kalev P, Van Limbergen EJ et al (2014) p16INK4a impairs homologous recombination-mediated DNA repair in human papillomavirus-positive head and neck tumors. Cancer Res 74:1739–1751CrossRefPubMedGoogle Scholar
  60. 60.
    Jirawatnotai S, Hu Y, Livingston DM et al (2012) Proteomic identification of a direct role for cyclin D1 in DNA damage repair. Cancer Res 72:4289–4293CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Akagi K, Li J, Broutian TR et al (2014) Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res 24:185–199CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Parfenov M, Pedamallu CS, Gehlenborg N et al (2014) Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci USA 111:15544–15549CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wilson GA, Lechner M, Koferle A et al (2013) Integrated virus–host methylome analysis in head and neck squamous cell carcinoma. Epigenetics 8:953–961CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kreimer AR, Chaturvedi AK (2011) HPV-associated oropharyngeal cancers—are they preventable? Cancer Prev Res 4:1346–1349CrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2016

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology, Head and Neck SurgeryYokohama City University, School of MedicineYokohamaJapan

Personalised recommendations