International Journal of Clinical Oncology

, Volume 20, Issue 3, pp 518–524

Pharmacodynamic separation of gemcitabine and erlotinib in locally advanced or metastatic pancreatic cancer: therapeutic and biomarker results

  • Thomas Semrad
  • Afsaneh Barzi
  • Heinz-Josef Lenz
  • Irene M. Hutchins
  • Edward J. Kim
  • I-Yeh Gong
  • Michael Tanaka
  • Laurel Beckett
  • William Holland
  • Rebekah A. Burich
  • Leslie Snyder-Solis
  • Philip Mack
  • Primo N. LaraJr.
Original Article

Abstract

Purpose

Erlotinib marginally improves survival when administered continuously with gemcitabine to patients with advanced pancreatic cancer; however, preclinical data suggest that there is antagonism between chemotherapy and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors when these are delivered concurrently. We tested a pharmacodynamic separation approach for erlotinib plus gemcitabine and interrogated EGFR signaling intermediates as potential surrogates for the efficacy of this strategy.

Methods

Patients with measurable, previously untreated locally advanced unresectable or metastatic pancreatic cancer were treated with gemcitabine 1000 mg/m2 as an intravenous infusion over 30-min on days 1, 8, 15 and erlotinib 150 mg/day on days 2–5, 9–12, 16–26 of each 28-day cycle. The primary endpoint was progression-free survival (PFS); secondary endpoints included RECIST objective response rate (ORR) and safety. The study was terminated after thirty patients due to funding considerations.

Results

The median PFS was 2.07 months (95 % CI; 1.87–5.50 months) and the ORR was 11 %. No unexpected safety signals were seen: the most common grade 3 or higher adverse events were neutropenia (23 %), lymphopenia (23 %), and fatigue (13 %). Patients with mutant plasma Kirsten rat sarcoma virus (KRAS) had significantly lower median PFS (1.8 vs. 4.6 months, p = 0.014) and overall survival (3.0 vs. 10.5 months, p = 0.003) than those without detected plasma KRAS mutations.

Conclusions

Although pharmacodynamically separated erlotinib and gemcitabine were feasible and tolerable in patients with advanced pancreatic cancer, no signal for increased efficacy was seen in this molecularly unselected cohort. Detection of a KRAS mutation in circulating cell-free DNA was a strong predictor of survival.

Keywords

Gemcitabine Erlotinib Pancreatic cancer Pharmacodynamic separation KRAS mutation 

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30. doi:10.3322/caac.21166 PubMedCrossRefGoogle Scholar
  2. 2.
    Conroy T, Desseigne F, Ychou M et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825. doi:10.1056/NEJMoa1011923 PubMedCrossRefGoogle Scholar
  3. 3.
    Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703. doi:10.1056/NEJMoa1304369 CrossRefGoogle Scholar
  4. 4.
    Tang P, Gill S, Au HJ et al (2009) Phase II trial of erlotinib in advanced pancreatic cancer (PC). J Clin Oncol 27(15S):4609Google Scholar
  5. 5.
    Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966. doi:10.1200/JCO.2006.07.9525 PubMedCrossRefGoogle Scholar
  6. 6.
    Davies AM, Ho C, Lara PN Jr et al (2006) Pharmacodynamic separation of epidermal growth factor receptor tyrosine kinase inhibitors and chemotherapy in non-small-cell lung cancer. Clin Lung Cancer 7(6):385–388. doi:10.3816/CLC.2006.n.021 PubMedCrossRefGoogle Scholar
  7. 7.
    Mahaffey CM, Davies AM, Lara PN Jr et al (2007) Schedule-dependent apoptosis in K-ras mutant non-small-cell lung cancer cell lines treated with docetaxel and erlotinib: rationale for pharmacodynamic separation. Clin Lung Cancer 8(9):548–553PubMedCrossRefGoogle Scholar
  8. 8.
    Grunewald K, Lyons J, Frohlich A et al (1989) High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 43(6):1037–1041PubMedCrossRefGoogle Scholar
  9. 9.
    Smit VT, Boot AJ, Smits AM et al (1988) KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucl Acids Res 16(16):7773–7782PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bardelli A, Siena S (2010) Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 28(7):1254–1261. doi:10.1200/JCO.2009.24.6116 PubMedCrossRefGoogle Scholar
  11. 11.
    Sangha R, Davies AM, Lara PN Jr et al (2011) Intercalated erlotinib-docetaxel dosing schedules designed to achieve pharmacodynamic separation: results of a phase I/II trial. J Thorac Oncol 6(12):2112–2119. doi:10.1097/JTO.0b013e31822ae061 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Davies AM, Ho C, Beckett L et al (2009) Intermittent erlotinib in combination with pemetrexed: phase I schedules designed to achieve pharmacodynamic separation. J Thorac Oncol 4(7):862–868. doi:10.1097/JTO.0b013e3181a94b08 PubMedCrossRefGoogle Scholar
  13. 13.
    da Cunha SG, Dhani N, Tu D et al (2010) Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer: National Cancer Institute of Canada Clinical Trials Group Study PA.3. Cancer 116(24):5599–5607. doi:10.1002/cncr.25393 CrossRefGoogle Scholar
  14. 14.
    Marchese R, Muleti A, Pasqualetti P et al (2006) Low correspondence between K-ras mutations in pancreatic cancer tissue and detection of K-ras mutations in circulating DNA. Pancreas 32(2):171–177. doi:10.1097/01.mpa.0000202938.63084.e3 PubMedCrossRefGoogle Scholar
  15. 15.
    Castells A, Puig P, Mora J et al (1999) K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol 17(2):578–584PubMedGoogle Scholar
  16. 16.
    Chen H, Tu H, Meng ZQ et al (2010) K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. Eur J Surg Oncol 36(7):657–662. doi:10.1016/j.ejso.2010.05.014 PubMedCrossRefGoogle Scholar
  17. 17.
    Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437. doi:10.1038/nrc3066 PubMedCrossRefGoogle Scholar
  18. 18.
    Tempero MA, Klimstra D, Berlin J et al (2013) Changing the way we do business: recommendations to accelerate biomarker development in pancreatic cancer. Clin Cancer Res 19(3):538–540. doi:10.1158/1078-0432.CCR-12-2745 PubMedCrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2014

Authors and Affiliations

  • Thomas Semrad
    • 1
  • Afsaneh Barzi
    • 2
  • Heinz-Josef Lenz
    • 2
  • Irene M. Hutchins
    • 3
  • Edward J. Kim
    • 1
  • I-Yeh Gong
    • 1
  • Michael Tanaka
    • 1
  • Laurel Beckett
    • 4
  • William Holland
    • 1
  • Rebekah A. Burich
    • 1
  • Leslie Snyder-Solis
    • 1
  • Philip Mack
    • 1
  • Primo N. LaraJr.
    • 1
  1. 1.Division of Hematology/Oncology, Department of Internal MedicineUniversity of California Davis Comprehensive Cancer CenterSacramentoUSA
  2. 2.Medical Oncology, Keck School of MedicineUniversity of Southern California Norris Cancer CenterLos AngelesUSA
  3. 3.Department of Internal MedicineUniversity of California, DavisSacramentoUSA
  4. 4.Division of Biostatistics, Department of Public Health SciencesUniversity of California, DavisDavisUSA

Personalised recommendations