Advertisement

International Journal of Clinical Oncology

, Volume 19, Issue 4, pp 564–569 | Cite as

Recent advances in radiation oncology: intensity-modulated radiotherapy, a clinical perspective

  • Katsumasa NakamuraEmail author
  • Tomonari Sasaki
  • Saiji Ohga
  • Tadamasa Yoshitake
  • Kotaro Terashima
  • Kaori Asai
  • Keiji Matsumoto
  • Yoshiyuki Shioyama
  • Hiroshi Honda
Review Article

Abstract

Radiotherapy plays an important role in the treatment of various malignancies, and intensity-modulated radiotherapy (IMRT) is an attractive option because it can deliver precise conformal radiation doses to the target while minimizing the dose to adjacent normal tissues. IMRT provides a highly conformal dose distribution by modulating the intensity of the radiation beam. A number of malignancies have been targeted by IMRT; this work reviews published data on the major disease sites treated with IMRT. The dosimetric advantage of IMRT has resulted in the significant reduction of adverse effects in some tumors. However, there are few clinical trials comparing IMRT and three-dimensional conformal radiotherapy (3D-CRT), and no definite increase in survival or the loco-regional control rate by IMRT has been demonstrated in many malignancies. IMRT also requires greater time and resources to complete compared to 3D-CRT. In addition, the cost–effectiveness of IMRT versus 3D-CRT has not yet been established.

Keywords

Intensity-modulated radiotherapy Three-dimensional conformal radiotherapy Adverse effects Cost–effectiveness Survival 

Notes

Acknowledgments

This study was supported in part by KAKENHI (No. 26670563) and a Health Labor Sciences Research Grant (H23-Sanjigan-Ippan-007) from the Japanese Ministry of Health, Labor and Welfare.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fraass BA (1995) The development of conformal radiation therapy. Med Phys 22:1911–1921PubMedCrossRefGoogle Scholar
  2. 2.
    Teoh M, Clark CH, Wood K et al (2011) Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol 84:967–996PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Tomita N, Kodaira T, Teshima T et al (2014) Japanese structure survey of high-precision radiotherapy in 2012 based on institutional questionnaire about the patterns of care. Jpn J Clin Oncol. doi: 10.1093/jjco/hyu041 Google Scholar
  4. 4.
    Amelio D, Lorentini S, Schwarz M et al (2010) Intensity-modulated radiation therapy in newly diagnosed glioblastoma: a systematic review on clinical and technical issues. Radiother Oncol 97:361–369PubMedCrossRefGoogle Scholar
  5. 5.
    Iuchi T, Hatano K, Kodama T et al (2014) Phase 2 trial of hypofractionated high-dose intensity modulated radiation therapy with concurrent and adjuvant temozolomide for newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys 88:793–800PubMedCrossRefGoogle Scholar
  6. 6.
    Oskan F, Ganswindt U, Schwarz SB et al (2014) Hippocampus sparing in whole-brain radiotherapy. A review. Strahlenther Onkol 190:337–341PubMedCrossRefGoogle Scholar
  7. 7.
    van der Laan HP, Gawryszuk A, Christianen ME et al (2013) Swallowing-sparing intensity-modulated radiotherapy for head and neck cancer patients: treatment planning optimization and clinical introduction. Radiother Oncol 107:282–287PubMedCrossRefGoogle Scholar
  8. 8.
    Gomez-Millan J, Fernandez JR, Medina Carmona JA (2013) Current status of IMRT in head and neck cancer. Rep Pract Oncol Radiother 18:371–375PubMedCrossRefGoogle Scholar
  9. 9.
    Nutting CM, Morden JP, Harrington KJ et al (2011) Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol 12:127–136PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Spiotto MT, Weichselbaum RR (2014) Comparison of 3D conformal radiotherapy and intensity modulated radiotherapy with or without simultaneous integrated boost during concurrent chemoradiation for locally advanced head and neck cancers. PLoS One 9:e94456PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gregoire V, Jeraj R, Lee JA et al (2012) Radiotherapy for head and neck tumours in 2012 and beyond: conformal, tailored, and adaptive? Lancet Oncol 13:e292–e300PubMedCrossRefGoogle Scholar
  12. 12.
    Dayes I, Rumble RB, Bowen J et al (2012) Intensity-modulated radiotherapy in the treatment of breast cancer. Clin Oncol 24:488–498CrossRefGoogle Scholar
  13. 13.
    Freedman GM, Li T, Nicolaou N et al (2009) Breast intensity-modulated radiation therapy reduces time spent with acute dermatitis for women of all breast sizes during radiation. Int J Radiat Oncol Biol Phys 74:689–694PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Manon RR, Jaradat H, Patel R et al (2005) Potential for radiation therapy technology innovations to permit dose escalation for non-small-cell lung cancer. Clin Lung Cancer 7:107–113PubMedGoogle Scholar
  15. 15.
    Aibe N, Yamazaki H, Nakamura S et al (2014) Outcome and toxicity of stereotactic body radiotherapy with helical tomotherapy for inoperable lung tumor: analysis of grade 5 radiation pneumonitis. J Radiat Res 55(3):575–582.Google Scholar
  16. 16.
    Bezjak A, Rumble RB, Rodrigues G et al (2012) Intensity-modulated radiotherapy in the treatment of lung cancer. Clin Oncol 24:508–520CrossRefGoogle Scholar
  17. 17.
    Jiang ZQ, Yang K, Komaki R et al (2012) Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: the MD Anderson experience. Int J Radiat Oncol Biol Phys 83:332–339PubMedCrossRefGoogle Scholar
  18. 18.
    Zelefsky MJ, Yamada Y, Fuks Z et al (2008) Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys 71:1028–1033PubMedCrossRefGoogle Scholar
  19. 19.
    Hatano K, Araki H, Sakai M et al (2007) Current status of intensity-modulated radiation therapy (IMRT). Int J Clin Oncol 12:408–415PubMedGoogle Scholar
  20. 20.
    Cahlon O, Hunt M, Zelefsky MJ (2008) Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol 18:48–57PubMedCrossRefGoogle Scholar
  21. 21.
    Bauman G, Rumble RB, Chen J et al (2012) Intensity-modulated radiotherapy in the treatment of prostate cancer. Clin Oncol 24:461–473CrossRefGoogle Scholar
  22. 22.
    Li XA, Wang JZ, Jursinic PA et al (2005) Dosimetric advantages of IMRT simultaneous integrated boost for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 61:1251–1257PubMedCrossRefGoogle Scholar
  23. 23.
    Zaorsky NG, Ohri N, Showalter TN et al (2013) Systematic review of hypofractionated radiation therapy for prostate cancer. Cancer Treat Rev 39:728–736PubMedCrossRefGoogle Scholar
  24. 24.
    Nath SK, Sandhu AP, Rose BS et al (2010) Toxicity analysis of postoperative image-guided intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 78:435–441PubMedCrossRefGoogle Scholar
  25. 25.
    Thompson IM, Valicenti RK, Albertsen P et al (2013) Adjuvant and salvage radiotherapy after prostatectomy: AUA/ASTRO guideline. J Urol 190:441–449PubMedCrossRefGoogle Scholar
  26. 26.
    Wagner A, Jhingran A, Gaffney D (2013) Intensity modulated radiotherapy in gynecologic cancers: hope, hype or hyperbole? Gynecol Oncol 130:229–236PubMedCrossRefGoogle Scholar
  27. 27.
    Gandhi AK, Sharma DN, Rath GK et al (2013) Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: a prospective randomized study. Int J Radiat Oncol Biol Phys 87:542–548PubMedCrossRefGoogle Scholar
  28. 28.
    Klopp AH, Moughan J, Portelance L et al (2013) Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys 86:83–90PubMedCrossRefGoogle Scholar
  29. 29.
    Fernandez-Ots A, Crook J (2013) The role of intensity modulated radiotherapy in gynecological radiotherapy: present and future. Rep Pract Oncol Radiother 18:363–370PubMedCrossRefGoogle Scholar
  30. 30.
    Jadon R, Pembroke CA, Hanna CL et al (2014) A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol 26:185–196CrossRefGoogle Scholar
  31. 31.
    Joaquim AF, Ghizoni E, Tedeschi H et al (2013) Stereotactic radiosurgery for spinal metastases: a literature review. Einstein (Sao Paulo, Brazil) 11:247–255CrossRefGoogle Scholar
  32. 32.
    Sahgal A, Whyne CM, Ma L et al (2013) Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases. Lancet Oncol 14:e310–e320PubMedCrossRefGoogle Scholar
  33. 33.
    Yong JH, Beca J, McGowan T et al (2012) Cost-effectiveness of intensity-modulated radiotherapy in prostate cancer. Clin Oncol 24:521–531CrossRefGoogle Scholar
  34. 34.
    Goldin GH, Sheets NC, Meyer AM et al (2013) Comparative effectiveness of intensity-modulated radiotherapy and conventional conformal radiotherapy in the treatment of prostate cancer after radical prostatectomy. JAMA Intern Med 173:1136–1143PubMedCrossRefGoogle Scholar
  35. 35.
    Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88PubMedCrossRefGoogle Scholar
  36. 36.
    Murray L, Henry A, Hoskin P et al (2014) Second primary cancers after radiation for prostate cancer: a systematic review of the clinical data and impact of treatment technique. Radiother Oncol 110:213–228PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2014

Authors and Affiliations

  • Katsumasa Nakamura
    • 1
    Email author
  • Tomonari Sasaki
    • 1
  • Saiji Ohga
    • 1
  • Tadamasa Yoshitake
    • 2
  • Kotaro Terashima
    • 1
  • Kaori Asai
    • 1
  • Keiji Matsumoto
    • 1
  • Yoshiyuki Shioyama
    • 1
  • Hiroshi Honda
    • 1
  1. 1.Department of Clinical Radiology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Comprehensive Clinical Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations