International Journal of Clinical Oncology

, Volume 19, Issue 3, pp 431–436 | Cite as

Update of molecular pathobiology in oral cancer: a review

  • Tomonori Sasahira
  • Tadaaki Kirita
  • Hiroki Kuniyasu
Review Article


Head and neck cancer including oral squamous cell carcinoma (OSCC) is the sixth most common cancer in the world. OSCC has a high potential for local invasion and nodal metastasis, and the overall 5-year survival rate has not significantly changed during the past 30 years. Recent research has elucidated the detailed molecular mechanisms of carcinogenesis, tumor progression, and metastasis of OSCC. It is generally accepted that OSCC arises from multiple genetic alterations caused by chronic exposure to carcinogens such as alcohol, smoking, viral infections, and inflammation. The molecular mechanisms of carcinogenesis, tumor progression, and metastasis of head and neck cancer have been elucidated by recent advances in molecular biology. However, many unsolved questions remain. In this review, we describe the current molecular biological findings such as human papillomavirus infection, epithelial–mesenchymal transition, microRNA, and our novel molecular pathological findings of OSCC.


Oral cancer HPV EMT miRNA 



This work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Japan.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Min R, Siyi L, Wenjun Y et al (2012) Toll-like receptor-9 agonists increase cyclin D1 expression partly through activation of activator protein-1 in human oral squamous cell carcinoma cells. Cancer Sci 103(11):1938–1945PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62(1):10–29PubMedCrossRefGoogle Scholar
  3. 3.
    Tanaka S, Sobue T (2005) Comparison of oral and pharyngeal cancer mortality in five countries: France, Italy, Japan, UK and USA from the WHO Mortality Database (1960–2000). Jpn J Clin Oncol 35(8):488–491PubMedCrossRefGoogle Scholar
  4. 4.
    Kurihara M, Kirita T, Sasahira T et al (2013) Protumoral roles of melanoma inhibitory activity 2 in oral squamous cell carcinoma. Br J Cancer 108(7):1460–1469PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Dos Reis PP, Bharadwaj RR, Machado J et al (2008) Claudin 1 overexpression increases invasion and is associated with aggressive histological features in oral squamous cell carcinoma. Cancer 113(11):3169–3180PubMedCrossRefGoogle Scholar
  6. 6.
    Marsh D, Suchak K, Moutasim KA et al (2011) Stromal features are predictive of disease mortality in oral cancer patients. J Pathol 223(4):470–481PubMedCrossRefGoogle Scholar
  7. 7.
    Sasahira T, Kurihara M, Bhawal UK et al (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer 107(4):700–706PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11(1):9–22PubMedCrossRefGoogle Scholar
  9. 9.
    Syrjanen S, Lodi G, von Bultzingslowen I et al (2011) Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis 17(Suppl 1):58–72PubMedCrossRefGoogle Scholar
  10. 10.
    Kreimer AR, Clifford GM, Boyle P et al (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev 14(2):467–475CrossRefGoogle Scholar
  11. 11.
    D’Souza G, Kreimer AR, Viscidi R et al (2007) Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356(19):1944–1956PubMedCrossRefGoogle Scholar
  12. 12.
    Begum S, Westra WH (2008) Basaloid squamous cell carcinoma of the head and neck is a mixed variant that can be further resolved by HPV status. Am J Surg Pathol 32(7):1044–1050PubMedCrossRefGoogle Scholar
  13. 13.
    Quan J, Elhousiny M, Johnson NW et al (2013) Transforming growth factor-beta1 treatment of oral cancer induces epithelial–mesenchymal transition and promotes bone invasion via enhanced activity of osteoclasts. Clin Exp Metastasis 30(5):659–670PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFbeta in cancer. FEBS Lett 586(14):1959–1970PubMedCrossRefGoogle Scholar
  15. 15.
    Wu BH, Xiong XP, Jia J et al (2011) MicroRNAs: new actors in the oral cancer scene. Oral Oncol 47(5):314–319PubMedCrossRefGoogle Scholar
  16. 16.
    Perez-Sayans M, Pilar GD, Barros-Angueira F et al (2012) Current trends in miRNAs and their relationship with oral squamous cell carcinoma. J Oral Pathol Med 41(6):433–443PubMedCrossRefGoogle Scholar
  17. 17.
    Park NJ, Zhou H, Elashoff D et al (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15(17):5473–5477PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Wald AI, Hoskins EE, Wells SI et al (2011) Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck 33(4):504–512PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Li J, Huang H, Sun L et al (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15(12):3998–4008PubMedCrossRefGoogle Scholar
  20. 20.
    Liu X, Wang A, Heidbreder CE et al (2010) MicroRNA-24 targeting RNA-binding protein DND1 in tongue squamous cell carcinoma. FEBS Lett 584(18):4115–4120PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Chang KW, Liu CJ, Chu TH et al (2008) Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J Dent Res 87(11):1063–1068PubMedCrossRefGoogle Scholar
  22. 22.
    Liu CJ, Tsai MM, Hung PS et al (2010) miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 70(4):1635–1644PubMedCrossRefGoogle Scholar
  23. 23.
    Yu ZW, Zhong LP, Ji T et al (2010) MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol 46(4):317–322PubMedCrossRefGoogle Scholar
  24. 24.
    Wong TS, Liu XB, Chung-Wai Ho A et al (2008) Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 123(2):251–257PubMedCrossRefGoogle Scholar
  25. 25.
    Mutallip M, Nohata N, Hanazawa T et al (2011) Glutathione S-transferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR-133alpha in head and neck squamous cell carcinoma (HNSCC). Int J Mol Med 27(3):345–352PubMedGoogle Scholar
  26. 26.
    Jiang L, Liu X, Chen Z et al (2010) MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 432(1):199–205PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Liu X, Wang C, Chen Z et al (2011) MicroRNA-138 suppresses epithelial–mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 440(1):23–31PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Zidar N, Bostjancic E, Gale N et al (2011) Down-regulation of microRNAs of the miR-200 family and miR-205, and an altered expression of classic and desmosomal cadherins in spindle cell carcinoma of the head and neck–hallmark of epithelial–mesenchymal transition. Hum Pathol 42(4):482–488PubMedCrossRefGoogle Scholar
  29. 29.
    Hatakeyama H, Cheng H, Wirth P et al (2010) Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS One 5(9):e12702. doi: 10.1371/journal.pone.0012702 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Donnem T, Fenton CG, Lonvik K et al (2012) MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PLoS One 7(1):e29671. doi: 10.1371/journal.pone.0029671 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Slaby O, Redova M, Poprach A et al (2012) Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosom Cancer 51(7):707–716PubMedCrossRefGoogle Scholar
  32. 32.
    Jiao LR, Frampton AE, Jacob J et al (2012) MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS One 7(2):e32068. doi: 10.1371/journal.pone.0032068 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Sasahira T, Ueda N, Yamamoto K et al (2013) Trks are novel oncogenes involved in the induction of neovascularization, tumor progression, and nodal metastasis in oral squamous cell carcinoma. Clin Exp Metastasis 30(2):165–176PubMedCrossRefGoogle Scholar
  34. 34.
    Sasahira T, Ueda N, Kurihara M et al (2013) Tropomyosin receptor kinases B and C are tumor progressive and metastatic marker in colorectal carcinoma. Hum Pathol 44(6):1098–1106PubMedCrossRefGoogle Scholar
  35. 35.
    Davidson B, Reich R, Lazarovici P et al (2003) Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res 9(6):2248–2259PubMedGoogle Scholar
  36. 36.
    Yu X, Liu L, Cai B et al (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99(3):543–552PubMedCrossRefGoogle Scholar
  37. 37.
    Bouzas-Rodriguez J, Cabrera JR, Delloye-Bourgeois C et al (2010) Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. J Clin Invest 120(3):850–858PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Nakagawara A, Arima-Nakagawara M, Scavarda NJ et al (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328(12):847–854PubMedCrossRefGoogle Scholar
  39. 39.
    Yamashiro DJ, Liu XG, Lee CP et al (1997) Expression and function of Trk-C in favourable human neuroblastomas. Eur J Cancer 33(12):2054–2057PubMedCrossRefGoogle Scholar
  40. 40.
    Satoh F, Mimata H, Nomura T et al (2001) Autocrine expression of neurotrophins and their receptors in prostate cancer. Int J Urol 8(7):S28–S34PubMedCrossRefGoogle Scholar
  41. 41.
    Chuang LS, Ito K, Ito Y (2013) RUNX family: regulation and diversification of roles through interacting proteins. Int J Cancer 132(6):1260–1271PubMedCrossRefGoogle Scholar
  42. 42.
    Sasahira T, Kurihara M, Yamamoto K et al (2011) Downregulation of runt-related transcription factor 3 associated with poor prognosis of adenoid cystic and mucoepidermoid carcinomas of the salivary gland. Cancer Sci 102(2):492–497PubMedCrossRefGoogle Scholar
  43. 43.
    Sasahira T, Akama Y, Fujii K et al (2005) Expression of receptor for advanced glycation end products and HMGB1/amphoterin in colorectal adenomas. Virchows Arch 446(4):411–415PubMedCrossRefGoogle Scholar
  44. 44.
    Kusume A, Sasahira T, Luo Y et al (2009) Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer. Pathobiology 76(4):155–162PubMedCrossRefGoogle Scholar
  45. 45.
    Kuniyasu H, Sasaki T, Sasahira T et al (2004) Depletion of tumor-infiltrating macrophages is associated with amphoterin expression in colon cancer. Pathobiology 71(3):129–136PubMedCrossRefGoogle Scholar
  46. 46.
    Sasahira T, Sasaki T, Kuniyasu H (2005) Interleukin-15 and transforming growth factor alpha are associated with depletion of tumor-associated macrophages in colon cancer. J Exp Clin Cancer Res 24(1):69–74PubMedGoogle Scholar
  47. 47.
    Rauvala H, Huttunen HJ, Fages C et al (2000) Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol 19(5):377–387PubMedCrossRefGoogle Scholar
  48. 48.
    Taguchi A, Blood DC, del Toro G et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405(6784):354–360PubMedCrossRefGoogle Scholar
  49. 49.
    Kuniyasu H, Oue N, Wakikawa A et al (2002) Expression of receptors for advanced glycation end-products (RAGE) is closely associated with the invasive and metastatic activity of gastric cancer. J Pathol 196(2):163–170PubMedCrossRefGoogle Scholar
  50. 50.
    Kuniyasu H, Chihara Y, Takahashi T (2003) Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep 10(2):445–448PubMedGoogle Scholar
  51. 51.
    Sasahira T, Kirita T, Bhawal UK et al (2007) Receptor for advanced glycation end products (RAGE) is important in the prediction of recurrence in human oral squamous cell carcinoma. Histopathology 51(2):166–172PubMedCrossRefGoogle Scholar
  52. 52.
    Sasahira T, Kirita T, Bhawal UK et al (2007) The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch 450(3):287–295PubMedCrossRefGoogle Scholar
  53. 53.
    Yamamoto K, Kitayama W, Denda A et al (2006) Expression of receptor for advanced glycation end products during rat tongue carcinogenesis by 4-nitroquinoline 1-oxide and effect of a selective cyclooxygenase-2 inhibitor, etodolac. Pathobiology 73(6):317–324PubMedCrossRefGoogle Scholar
  54. 54.
    Bosserhoff AK, Moser M, Buettner R (2004) Characterization and expression pattern of the novel MIA homolog TANGO. Gene Expr Patterns 4(4):473–479PubMedCrossRefGoogle Scholar
  55. 55.
    Bosserhoff AK, Buettner R (2002) Expression, function and clinical relevance of MIA (melanoma inhibitory activity). Histol Histopathol 17(1):289–300PubMedGoogle Scholar
  56. 56.
    Arndt S, Bosserhoff AK (2006) TANGO is a tumor suppressor of malignant melanoma. Int J Cancer 119(12):2812–2820PubMedCrossRefGoogle Scholar
  57. 57.
    Arndt S, Bosserhoff AK (2007) Reduced expression of TANGO in colon and hepatocellular carcinomas. Oncol Rep 18(4):885–891PubMedGoogle Scholar
  58. 58.
    Koehler MR, Bosserhoff A, von Beust G et al (1996) Assignment of the human melanoma inhibitory activity gene (MIA) to 19q13.32–q13.33 by fluorescence in situ hybridization (FISH). Genomics 35(1):265–267PubMedCrossRefGoogle Scholar
  59. 59.
    Bosserhoff AK, Stoll R, Sleeman JP et al (2003) Active detachment involves inhibition of cell-matrix contacts of malignant melanoma cells by secretion of melanoma inhibitory activity. Lab Invest 83(11):1583–1594PubMedCrossRefGoogle Scholar
  60. 60.
    Jachimczak P, Apfel R, Bosserhoff AK et al (2005) Inhibition of immunosuppressive effects of melanoma-inhibiting activity (MIA) by antisense techniques. Int J Cancer 113(1):88–92PubMedCrossRefGoogle Scholar
  61. 61.
    Sasahira T, Kirita T, Oue N et al (2008) High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci 99(9):1806–1812PubMedGoogle Scholar
  62. 62.
    Sasahira T, Kirita T, Kurihara M et al (2010) MIA-dependent angiogenesis and lymphangiogenesis are closely associated with progression, nodal metastasis and poor prognosis in tongue squamous cell carcinoma. Eur J Cancer 46(12):2285–2294PubMedCrossRefGoogle Scholar
  63. 63.
    Bosserhoff AK, Moser M, Scholmerich J et al (2003) Specific expression and regulation of the new melanoma inhibitory activity-related gene MIA2 in hepatocytes. J Biol Chem 278(17):15225–15231PubMedCrossRefGoogle Scholar
  64. 64.
    Hellerbrand C, Bataille F, Schlegel J et al (2005) In situ expression patterns of melanoma inhibitory activity 2 in healthy and diseased livers. Liver Int 25(2):357–366PubMedCrossRefGoogle Scholar
  65. 65.
    Hellerbrand C, Amann T, Schlegel J et al (2008) The novel gene MIA2 acts as a tumour suppressor in hepatocellular carcinoma. Gut 57(2):243–251PubMedCrossRefGoogle Scholar
  66. 66.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95CrossRefGoogle Scholar
  67. 67.
    Wu JY, Yi C, Chung HR et al (2010) Potential biomarkers in saliva for oral squamous cell carcinoma. Oral Oncol 46(4):226–231PubMedCrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2014

Authors and Affiliations

  • Tomonori Sasahira
    • 1
  • Tadaaki Kirita
    • 2
  • Hiroki Kuniyasu
    • 1
  1. 1.Department of Molecular PathologyNara Medical UniversityKashiharaJapan
  2. 2.Department of Oral and Maxillofacial SurgeryNara Medical UniversityKashiharaJapan

Personalised recommendations