International Journal of Clinical Oncology

, Volume 16, Issue 4, pp 352–358 | Cite as

Overexpression of Galectin-3 and its clinical significance in ovarian carcinoma

  • Min Kyu Kim
  • Chang Ohk Sung
  • In-Gu Do
  • Hye-Kyung Jeon
  • Tae Jong Song
  • Hwang Shin Park
  • Yoo-Young Lee
  • Byoung-Gie Kim
  • Jeong-Won Lee
  • Duk-Soo Bae
Original Article

Abstract

Background

Galectin-3 (Gal-3) is a β-galactoside-binding lectin involved in regulating cell growth, angiogenesis, and tumor progression. We investigated the clinical significance of Gal-3 expression including its possible use as a prognostic marker or therapeutic target in epithelial ovarian carcinoma (EOC).

Methods

Gal-3 expression was evaluated by immunohistochemistry in 71 patients with 54 serous, 13 endometrioid, and 4 mucinous ovarian carcinomas. We assessed the correlation of Gal-3 expression with clinical characteristics including histology, optimal debulking, chemosensitivity, and survival. In vitro, Gal-3 was inhibited using siRNA to evaluate its role in cell growth and sensitivity to chemotherapeutic agents in ovarian carcinoma cell lines.

Results

Gal-3 protein, which was mainly cytoplasmic in location, was observed in a majority (63/71, 88.7%) of the EOCs but not in normal ovarian tissues (P < 0.001). High Gal-3 expression in EOCs correlated with shorter progression-free survival (PFS) of patients (P = 0.039; 43.1 and 49.5 months, respectively). Moreover, cotreatment with Gal-3 siRNA and paclitaxel showed an enhanced cytotoxic effect compared with control siRNA in SKOV3 cells.

Conclusion

These findings suggest that Gal-3 expression can be a prognostic factor for PFS and may be involved in regulating the response to paclitaxel-based chemotherapy in the treatment of EOC.

Keywords

Galectin-3 Ovarian carcinoma siRNA Chemosensitivity Molecular target 

References

  1. 1.
    Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130PubMedCrossRefGoogle Scholar
  2. 2.
    Kim K, Ryu SY (2009) Prognostic factors of secondary cytoreductive surgery for patients with recurrent epithelial ovarian cancer. J Gynecol Oncol 20:198PubMedCrossRefGoogle Scholar
  3. 3.
    Banerjee S, Gore M (2009) The future of targeted therapies in ovarian cancer. Oncologist 14:706–716PubMedCrossRefGoogle Scholar
  4. 4.
    Barondes SH, Cooper DN, Gitt MA et al (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810PubMedGoogle Scholar
  5. 5.
    Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304PubMedCrossRefGoogle Scholar
  6. 6.
    Elola MT, Wolfenstein-Todel C, Troncoso MF et al (2007) Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 64:1679–1700PubMedCrossRefGoogle Scholar
  7. 7.
    Le Mercier M, Fortin S, Mathieu V et al (2010) Galectins and gliomas. Brain Pathol 20:17–27PubMedCrossRefGoogle Scholar
  8. 8.
    Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17PubMedCrossRefGoogle Scholar
  9. 9.
    Davidson PJ, Li SY, Lohse AG et al (2006) Transport of galectin-3 between the nucleus and cytoplasm. I. Conditions and signals for nuclear import. Glycobiology 16:602–611PubMedCrossRefGoogle Scholar
  10. 10.
    Ochieng J, Furtak V, Lukyanov P (2004) Extracellular functions of galectin-3. Glycoconj J 19:527–535PubMedCrossRefGoogle Scholar
  11. 11.
    Matarrese P, Fusco O, Tinari N et al (2000) Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int J Cancer 85:545–554PubMedCrossRefGoogle Scholar
  12. 12.
    Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci USA 93:6737–6742PubMedCrossRefGoogle Scholar
  13. 13.
    Akahani S, Nangia-Makker P, Inohara H et al (1997) Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res 57:5272–5276PubMedGoogle Scholar
  14. 14.
    Bresalier RS, Mazurek N, Sternberg LR et al (1998) Metastasis of human colon cancer is altered by modifying expression of the beta-galactoside-binding protein galectin 3. Gastroenterology 115:287–296PubMedCrossRefGoogle Scholar
  15. 15.
    van den Brule F, Califice S, Castronovo V (2004) Expression of galectins in cancer: a critical review. Glycoconj J 19:537–542PubMedCrossRefGoogle Scholar
  16. 16.
    van den Brule FA, Berchuck A, Bast RC et al (1994) Differential expression of the 67-kD laminin receptor and 31-kD human laminin-binding protein in human ovarian carcinomas. Eur J Cancer 30A:1096–1099PubMedCrossRefGoogle Scholar
  17. 17.
    Brustmann H (2008) Epidermal growth factor receptor expression in serous ovarian carcinoma: an immunohistochemical study with galectin-3 and cyclin D1 and outcome. Int J Gynecol Pathol 27:380–389PubMedCrossRefGoogle Scholar
  18. 18.
    Oishi T, Itamochi H, Kigawa J et al (2007) Galectin-3 may contribute to cisplatin resistance in clear cell carcinoma of the ovary. Int J Gynecol Cancer 17:1040–1046PubMedCrossRefGoogle Scholar
  19. 19.
    Saussez S, Decaestecker C, Mahillon V et al (2008) Galectin-3 upregulation during tumor progression in head and neck cancer. Laryngoscope 118:1583–1590PubMedCrossRefGoogle Scholar
  20. 20.
    Lee JW, Lee SJ, Seo J et al (2005) Increased expressions of claudin-1 and claudin-7 during the progression of cervical neoplasia. Gynecol Oncol 97:53–59PubMedCrossRefGoogle Scholar
  21. 21.
    Shimonishi T, Miyazaki K, Kono N et al (2001) Expression of endogenous galectin-1 and galectin-3 in intrahepatic cholangiocarcinoma. Hum Pathol 32:302–310PubMedCrossRefGoogle Scholar
  22. 22.
    Nakahara S, Raz A (2008) Biological modulation by lectins and their ligands in tumor progression and metastasis. Anticancer Agents Med Chem 8:22–36PubMedCrossRefGoogle Scholar
  23. 23.
    Nangia-Makker P, Hogan V, Honjo Y et al (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94:1854–1862PubMedGoogle Scholar
  24. 24.
    Bresalier RS, Yan PS, Byrd JC et al (1997) Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer (Phila) 80:776–787CrossRefGoogle Scholar
  25. 25.
    Schoeppner HL, Raz A, Ho SB et al (1995) Expression of an endogenous galactose-binding lectin correlates with neoplastic progression in the colon. Cancer (Phila) 75:2818–2826CrossRefGoogle Scholar
  26. 26.
    Miyazaki J, Hokari R, Kato S et al (2002) Increased expression of galectin-3 in primary gastric cancer and the metastatic lymph nodes. Oncol Rep 9:1307–1312PubMedGoogle Scholar
  27. 27.
    Davidson PJ, Davis MJ, Patterson RJ et al (2002) Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 12:329–337PubMedCrossRefGoogle Scholar
  28. 28.
    Takenaka Y, Fukumori T, Raz A (2004) Galectin-3 and metastasis. Glycoconj J 19:543–549PubMedCrossRefGoogle Scholar
  29. 29.
    Balasubramanian K, Vasudevamurthy R, Venkateshaiah SU et al (2009) Galectin-3 in urine of cancer patients: stage and tissue specificity. J Cancer Res Clin Oncol 135:355–363PubMedCrossRefGoogle Scholar
  30. 30.
    Lin CI, Whang EE, Abramson MA et al (2009) Galectin-3 regulates apoptosis and doxorubicin chemoresistance in papillary thyroid cancer cells. Biochem Biophys Res Commun 379:626–631PubMedCrossRefGoogle Scholar
  31. 31.
    Guess BW, Scholz MC, Strum SB et al (2003) Modified citrus pectin (MCP) increases the prostate-specific antigen doubling time in men with prostate cancer: a phase II pilot study. Prostate Cancer Prostatic Dis 6:301–304PubMedCrossRefGoogle Scholar
  32. 32.
    Takei Y, Kadomatsu K, Yuzawa Y et al (2004) A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64:3365–3370PubMedCrossRefGoogle Scholar
  33. 33.
    Hingorani SR, Jacobetz MA, Robertson GP et al (2003) Suppression of BRAF (V599E) in human melanoma abrogates transformation. Cancer Res 63:5198–5202PubMedGoogle Scholar
  34. 34.
    Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247PubMedCrossRefGoogle Scholar
  35. 35.
    Glinsky VV, Kiriakova G, Glinskii OV et al (2009) Synthetic galectin-3 inhibitor increases metastatic cancer cell sensitivity to taxol-induced apoptosis in vitro and in vivo. Neoplasia 11:901–909PubMedGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2011

Authors and Affiliations

  • Min Kyu Kim
    • 1
  • Chang Ohk Sung
    • 2
  • In-Gu Do
    • 3
  • Hye-Kyung Jeon
    • 1
  • Tae Jong Song
    • 1
  • Hwang Shin Park
    • 1
  • Yoo-Young Lee
    • 1
  • Byoung-Gie Kim
    • 1
  • Jeong-Won Lee
    • 1
  • Duk-Soo Bae
    • 1
  1. 1.Department of Obstetrics and Gynecology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
  2. 2.Department of Pathology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
  3. 3.Experimental Pathology Center, Samsung Cancer Research InstituteSamsung Medical CenterSeoulKorea

Personalised recommendations