International Journal of Clinical Oncology

, Volume 13, Issue 4, pp 287–297 | Cite as

Molecular pathogenesis of bladder cancer

Review Article

Abstract

Bladder tumors show widely differing histopathology and clinical behavior. This is reflected in the molecular genetic alterations they contain. Much information has accumulated on somatic genomic alterations in bladder tumors of all grades and stages and when this information is related to the common histopathological appearances, a model for the pathogenesis of two major groups of bladder tumors has emerged. This review summarizes the genetic alterations that have been reported in bladder cancer and relates these to the current two-pathway model for tumor development. The molecular pathogenesis of high-grade noninvasive papillary tumors and of T1 tumors is not yet clear and possibilities are discussed.

Key words

Bladder Molecular pathogenesis Genetics Pathways 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spruck CH 3rd, Ohneseit PF, Gonzalez-Zulueta M, et al. (1994) Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 54:784–788PubMedGoogle Scholar
  2. 2.
    Knowles MA (2006) Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis 27:361–373PubMedCrossRefGoogle Scholar
  3. 3.
    Fadl-Elmula I, Gorunova L, Mandahl N, et al. (2000) Karyotypic characterization of urinary bladder transitional cell carcinomas. Genes Chromosomes Cancer 29:256–265PubMedCrossRefGoogle Scholar
  4. 4.
    Gibas Z, Prout GR Jr, Connolly JG, et al. (1984) Nonrandom chromosomal changes in transitional cell carcinoma of the bladder. Cancer Res 44:1257–1264PubMedGoogle Scholar
  5. 5.
    Cairns P, Shaw ME, Knowles MA (1993) Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene 8:1083–1085PubMedGoogle Scholar
  6. 6.
    Linnenbach AJ, Pressler LB, Seng BA, et al. (1993) Characterization of chromosome 9 deletions in transitional cell carcinoma by microsatellite assay. Hum Mol Genet 2:1407–1411PubMedCrossRefGoogle Scholar
  7. 7.
    Tsai YC, Nichols PW, Hiti AL, et al. (1990) Allelic losses of chromosomes 9, 11, and 17 in human bladder cancer. Cancer Res 50:44–47PubMedGoogle Scholar
  8. 8.
    Cairns P, Mao L, Merlo A, et al. (1994) Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science 265:415–417PubMedCrossRefGoogle Scholar
  9. 9.
    Devlin J, Keen AJ, Knowles MA (1994) Homozygous deletion mapping at 9p21 in bladder carcinoma defines a critical region within 2cM of IFNA. Oncogene 9:2757–2760PubMedGoogle Scholar
  10. 10.
    Orlow I, Lacombe L, Hannon GJ, et al. (1995) Deletion of the p16 and p15 genes in human bladder tumors. J Natl Cancer Inst 87:1524–1529PubMedCrossRefGoogle Scholar
  11. 11.
    Williamson MP, Elder PA, Shaw ME, et al. (1995) p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet 4:1569–1577PubMedCrossRefGoogle Scholar
  12. 12.
    Berggren P, Kumar R, Sakano S, et al. (2003) Detecting homozygous deletions in the CDKN2A (p16(INK4a))/ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin Cancer Res 9:235–242PubMedGoogle Scholar
  13. 13.
    Aboulkassim TO, LaRue H, Lemieux P, et al. (2003) Alteration of the PATCHED locus in superficial bladder cancer. Oncogene 22:2967–2971PubMedCrossRefGoogle Scholar
  14. 14.
    McGarvey TW, Maruta Y, Tomaszewski JE, et al. (1998) PTCH gene mutations in invasive transitional cell carcinoma of the bladder. Oncogene 17:1167–1172PubMedCrossRefGoogle Scholar
  15. 15.
    Hamed S, LaRue H, Hovington H, et al. (2004) Accelerated induction of bladder cancer in patched heterozygous mutant mice. Cancer Res 64:1938–1942PubMedCrossRefGoogle Scholar
  16. 16.
    Habuchi T, Yoshida O, Knowles MA (1997) A novel candidate tumour suppressor locus at 9q32–33 in bladder cancer: localisation of the candidate region within a single 840kb YAC. Hum Mol Genet 6:913–919PubMedCrossRefGoogle Scholar
  17. 17.
    Nishiyama H, Takahashi T, Kakehi Y, et al. (1999) Homozygous deletion at the 9q32–33 candidate tumor suppressor locus in primary human bladder cancer. Genes Chromosomes Cancer 26:171–175PubMedCrossRefGoogle Scholar
  18. 18.
    Habuchi T, Luscombe M, Elder PA, Knowles MA (1998) Structure and methylation-based silencing of a gene (DBCCR1) within a candidate bladder cancer tumor suppressor region at 9q32-q33. Genomics 48:277–288PubMedCrossRefGoogle Scholar
  19. 19.
    Habuchi T, Takahashi T, Kakinuma H, et al. (2001) Hypermethylation at 9q32–33 tumour suppressor region is age-related in normal urothelium and an early and frequent alteration in bladder cancer. Oncogene 20:531–537PubMedCrossRefGoogle Scholar
  20. 20.
    Salem C, Liang G, Tsai YC, et al. (2000) Progressive increases in de novo methylation of CpG islands in bladder cancer. Cancer Res 60:2473–2476PubMedGoogle Scholar
  21. 21.
    Louhelainen JP, Hurst CD, Pitt E, et al. (2005) DBC1 re-expression alters the expression of multiple components of the plasminogen pathway. Oncogene 25:2409–2419CrossRefGoogle Scholar
  22. 22.
    Pymar LS, Platt FM, Askham JM, et al. (2008) Bladder tumour derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Hum Mol Genet 17:2006–2017PubMedCrossRefGoogle Scholar
  23. 23.
    Knowles MA, Habuchi T, Kennedy W, Cuthbert-Heavens D (2003) Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res 63:7652–7656PubMedGoogle Scholar
  24. 24.
    Lindgren D, Liedberg F, Andersson A, et al. (2006) Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene 25:2685–2696PubMedCrossRefGoogle Scholar
  25. 25.
    Simoneau M, LaRue H, Aboulkassim TO, et al. (2000) Chromosome 9 deletions and recurrence of superficial bladder cancer: identification of four regions of prognostic interest. Oncogene 19:6317–6323PubMedCrossRefGoogle Scholar
  26. 26.
    Keen AJ, Knowles MA (1994) Definition of two regions of deletion on chromosome 9 in carcinoma of the bladder. Oncogene 9:2083–2088PubMedGoogle Scholar
  27. 27.
    Ruppert JM, Tokino K, Sidransky D. (1993) Evidence for two bladder cancer suppressor loci on human chromosome 9. Cancer Res 53:5093–5095PubMedGoogle Scholar
  28. 28.
    Chapman EJ, Harnden P, Chambers P, et al. (2005) Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype. Clin Cancer Res 11:5740–5747PubMedCrossRefGoogle Scholar
  29. 29.
    Takahashi T, Habuchi T, Kakehi Y, et al. (1998) Clonal and chronological genetic analysis of multifocal cancers of the bladder and upper urinary tract. Cancer Res 58:5835–5841PubMedGoogle Scholar
  30. 30.
    Billerey C, Chopin D, Aubriot-Lorton MH, et al. (2001) Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol 158:1955–1959PubMedGoogle Scholar
  31. 31.
    Tomlinson D, Baldo O, Harnden P, Knowles M (2007) FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol 213:91–98PubMedCrossRefGoogle Scholar
  32. 32.
    van Rhijn BW, Lurkin I, Radvanyi F, et al. (2001) The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 61:1265–1268PubMedGoogle Scholar
  33. 33.
    Zieger K, Dyrskjot L, Wiuf C, et al. (2005) Role of activating fibroblast growth factor receptor 3 mutations in the development of bladder tumors. Clin Cancer Res 11:7709–7719PubMedCrossRefGoogle Scholar
  34. 34.
    Jebar AH, Hurst CD, Tomlinson DC, et al. (2005) FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24:5218–5225PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez-Knowles E, Hernandez S, Malats N, et al. (2006) PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res 66:7401–7404PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Viciana P, Warne PH, Dhand R, et al. (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532PubMedCrossRefGoogle Scholar
  37. 37.
    Ramjaun AR, Downward J (2007) Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 6:2902–2905PubMedGoogle Scholar
  38. 38.
    Blaveri E, Brewer JL, Roydasgupta R, et al. (2005) Bladder cancer stage and outcome by array-based comparative genomic hybridization. Clin Cancer Res 11:7012–7022PubMedCrossRefGoogle Scholar
  39. 39.
    Richter J, Jiang F, Gorog JP, et al. (1997) Marked genetic differences between stage pTa and stage pT1 papillary bladder cancer detected by comparative genomic hybridization. Cancer Res 57:2860–2864PubMedGoogle Scholar
  40. 40.
    Zhao J, Richter J, Wagner U, et al. (1999) Chromosomal imbalances in noninvasive papillary bladder neoplasms (pTa). Cancer Res 59:4658–4661PubMedGoogle Scholar
  41. 41.
    Fujimoto K, Yamada Y, Okajima E, et al. (1992) Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res 52:1393–1398PubMedGoogle Scholar
  42. 42.
    Uchida T, Wada C, Ishida H, et al. (1995) p53 mutations and prognosis in bladder tumors. J Urol 153:1097–1104PubMedCrossRefGoogle Scholar
  43. 43.
    Olivier M, Eeles R, Hollstein M, et al. (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614PubMedCrossRefGoogle Scholar
  44. 44.
    Simon R, Struckmann K, Schraml P, et al. (2002) Amplification pattern of 12q13–q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21:2476–2483PubMedCrossRefGoogle Scholar
  45. 45.
    Stein JP, Ginsberg DA, Grossfeld GD, et al. (1998) Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 90:1072–1079PubMedCrossRefGoogle Scholar
  46. 46.
    George B, Datar RH, Wu L, et al. (2007) p53 gene and protein status: the role of p53 alterations in predicting outcome in patients with bladder cancer. J Clin Oncol 25:5352–5358PubMedCrossRefGoogle Scholar
  47. 47.
    Cairns P, Proctor AJ, Knowles MA (1991) Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene 6:2305–2309PubMedGoogle Scholar
  48. 48.
    Benedict WF, Lerner SP, Zhou J, et al. (1999) Level of retinoblastoma protein expression correlates with p16 (MTS-1/INK4A/CDKN2) status in bladder cancer. Oncogene 18:1197–1203PubMedCrossRefGoogle Scholar
  49. 49.
    Logothetis CJ, Xu H-J, Ro JY, et al. (1992) Altered expression of retinoblastoma protein and known prognostic variables in locally advanced bladder cancer. J Natl Cancer Inst 84:1256–1261PubMedCrossRefGoogle Scholar
  50. 50.
    Xu HJ, Cairns P, Hu SX, et al. (1993) Loss of RB protein expression in primary bladder cancer correlates with loss of heterozygosity at the RB locus and tumor progression. Int J Cancer 53:781–784PubMedCrossRefGoogle Scholar
  51. 51.
    Shariat SF, Tokunaga H, Zhou J, et al. (2004) p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J Clin Oncol 22:1014–1024PubMedCrossRefGoogle Scholar
  52. 52.
    Chatterjee SJ, Datar R, Youssefzadeh D, et al. (2004) Combined effects of p53, p21, and pRb expression in the progression of bladder transitional cell carcinoma. J Clin Oncol 22:1007–1013PubMedCrossRefGoogle Scholar
  53. 53.
    Cordon-Cardo C, Wartinger D, Petrylak D, et al. (1992) Altered expression of the retinoblastoma gene product: prognostic indicator in bladder cancer. J Natl Cancer Inst 84:1251–1256PubMedCrossRefGoogle Scholar
  54. 54.
    Feber A, Clark J, Goodwin G, et al. (2004) Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 23:1627–1630PubMedCrossRefGoogle Scholar
  55. 55.
    Hurst CD, Tomlinson DC, Williams SV, et al. (2007) Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification. Oncogene 27:2716–2727PubMedCrossRefGoogle Scholar
  56. 56.
    Oeggerli M, Schraml P, Ruiz C, et al. (2006) E2F3 is the main target gene of the 6p22 amplicon with high specificity for human bladder cancer. Oncogene 25:6538–6543PubMedCrossRefGoogle Scholar
  57. 57.
    Oeggerli M, Tomovska S, Schraml P, et al. (2004) E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 23:5616–5623PubMedCrossRefGoogle Scholar
  58. 58.
    Olsson AY, Feber A, Edwards S, et al. (2007) Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells. Oncogene 26:1028–1037PubMedCrossRefGoogle Scholar
  59. 59.
    Steinthorsdottir V, Thorleiffson G, Reynisdottir I, et al. (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775PubMedCrossRefGoogle Scholar
  60. 60.
    Aveyard JS, Skilleter A, Habuchi T, Knowles MA (1999) Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 80:904–908PubMedCrossRefGoogle Scholar
  61. 61.
    Cappellen D, Gil Diez de Medina S, Chopin D, et al. (1997) Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional cell carcinomas of the bladder. Oncogene 14:3059–3066PubMedCrossRefGoogle Scholar
  62. 62.
    Kagan J, Liu J, Stein JD, et al. (1998) Cluster of allele losses within a 2.5 cM region of chromosome 10 in high-grade invasive bladder cancer. Oncogene 16:909–913PubMedCrossRefGoogle Scholar
  63. 63.
    Wang DS, Rieger-Christ K, Latini JM, et al. (2000) Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. Int J Cancer 88:620–625PubMedCrossRefGoogle Scholar
  64. 64.
    Liu J, Babaian DC, Liebert M, et al. (2000) Inactivation of MMAC1 in bladder transitional-cell carcinoma cell lines and specimens. Mol Carcinog 29:143–150PubMedCrossRefGoogle Scholar
  65. 65.
    Kwabi-Addo B, Giri D, Schmidt K, et al. (2001) Haploin-sufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A 98:11563–11568PubMedCrossRefGoogle Scholar
  66. 66.
    Kwon CH, Zhao D, Chen J, et al. (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68:3286–3294PubMedCrossRefGoogle Scholar
  67. 67.
    Gildea JJ, Herlevsen M, Harding MA, et al. (2004) PTEN can inhibit in vitro organotypic and in vivo orthotopic invasion of human bladder cancer cells even in the absence of its lipid phosphatase activity. Oncogene 23:6788–6797PubMedCrossRefGoogle Scholar
  68. 68.
    Tsuruta H, Kishimoto H, Sasaki T, et al. (2006) Hyperplasia and carcinomas in Pten-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Res 66:8389–8396PubMedCrossRefGoogle Scholar
  69. 69.
    Coombs LM, Pigott DA, Sweeney E, et al. (1991) Amplification and over-expression of c-erbB-2 in transitional cell carcinoma of the urinary bladder. Br J Cancer 63:601–608PubMedGoogle Scholar
  70. 70.
    Lonn U, Lonn S, Friberg S, et al. (1995) Prognostic value of amplification of c-erb-B2 in bladder carcinoma. Clin Cancer Res 1:1189–1194PubMedGoogle Scholar
  71. 71.
    Miyamoto H, Kubota Y, Noguchi S, et al. (2000) C-ERBB-2 gene amplification as a prognostic marker in human bladder cancer. Urology 55:679–683PubMedCrossRefGoogle Scholar
  72. 72.
    Sauter G, Moch H, Moore D, et al. (1993) Heterogeneity of erbB-2 gene amplification in bladder cancer. Cancer Res 53:2199–2203PubMedGoogle Scholar
  73. 73.
    Simon R, Atefy R, Wagner U, et al. (2003) HER-2 and TOP2A coamplification in urinary bladder cancer. Int J Cancer 107:764–772PubMedCrossRefGoogle Scholar
  74. 74.
    Hovey RM, Chu L, Balazs M, et al. (1998) Genetic alterations in primary bladder cancers and their metastases. Cancer Res 58:3555–3560PubMedGoogle Scholar
  75. 75.
    Simon R, Burger H, Semjonow A, et al. (2000) Patterns of chromosomal imbalances in muscle invasive bladder cancer. Int J Oncol 17:1025–1029PubMedGoogle Scholar
  76. 76.
    Veltman JA, Fridlyand J, Pejavar S, et al. (2003) Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res 63:2872–2880PubMedGoogle Scholar
  77. 77.
    Simon R, Eltze E, Schafer KL, et al. (2001) Cytogenetic analysis of multifocal bladder cancer supports a monoclonal origin and intraepithelial spread of tumor cells. Cancer Res 61:355–362PubMedGoogle Scholar
  78. 78.
    Richter J, Beffa L, Wagner U, et al. (1998) Patterns of chromosomal imbalances in advanced urinary bladder cancer detected by comparative genomic hybridization. Am J Pathol 153:1615–1621PubMedGoogle Scholar
  79. 79.
    Schaffer AA, Simon R, Desper R, et al. (2001) Tree models for dependent copy number changes in bladder cancer. Int J Oncol 18:349–354PubMedGoogle Scholar
  80. 80.
    Adams J, Williams SV, Aveyard JS, Knowles MA (2005) Loss of heterozygosity analysis and DNA copy number measurement on 8p in bladder cancer reveals two mechanisms of allelic loss. Cancer Res 65:66–75PubMedGoogle Scholar
  81. 81.
    Choi C, Kim MH, Juhng SW, Oh BR (2000) Loss of heterozygosity at chromosome segments 8p22 and 8p11.2–21.1 in transitional-cell carcinoma of the urinary bladder. Int J Cancer 86:501–505PubMedCrossRefGoogle Scholar
  82. 82.
    Stoehr R, Wissmann C, Suzuki H, et al. (2004) Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. Lab Invest 465–478Google Scholar
  83. 83.
    Takle LA, Knowles MA (1996) Deletion mapping implicates two tumor suppressor genes on chromosome 8p in the development of bladder cancer. Oncogene 12:1083–1087PubMedGoogle Scholar
  84. 84.
    Williams SV, Adams J, Coulter J, et al. (2005) Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro. Genes Chromosomes Cancer 43:315–328PubMedCrossRefGoogle Scholar
  85. 85.
    Thompson TE, Rogan PK, Risinger JI, Taylor JA (2002) Splice variants but not mutations of DNA polymerase beta are common in bladder cancer. Cancer Res 62:3251–3256PubMedGoogle Scholar
  86. 86.
    Adams J, Cuthbert-Heavens D, Bass S, Knowles MA (2005) Infrequent mutation of TRAIL receptor 2 (TRAIL-R2/DR5) in transitional cell carcinoma of the bladder with 8p21 loss of heterozygosity. Cancer Lett 220:137–144PubMedCrossRefGoogle Scholar
  87. 87.
    Eydmann ME, Knowles MA (1997) Mutation analysis of 8p genes POLB and PPP2CB in bladder cancer. Cancer Genet Cytogenet 93:167–171PubMedCrossRefGoogle Scholar
  88. 88.
    Knowles MA, Aveyard JS, Taylor CF, et al. (2005) Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett 225:121–130PubMedCrossRefGoogle Scholar
  89. 89.
    Hernandez S, Lopez-Knowles E, Lloreta J, et al. (2006) Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol 24:3664–3671PubMedCrossRefGoogle Scholar
  90. 90.
    Richter J, Wagner U, Schraml P, et al. (1999) Chromosomal imbalances are associated with a high risk of progression in early invasive (pT1) urinary bladder cancer. Cancer Res 59:5687–5691PubMedGoogle Scholar
  91. 91.
    van Tilborg AA, de Vries A, de Bont M, et al. (2000) Molecular evolution of multiple recurrent cancers of the bladder. Hum Mol Genet 9:2973–2980PubMedCrossRefGoogle Scholar
  92. 92.
    Hernandez S, Lopez-Knowles E, Lloreta J, et al. (2005) FGFR3 and Tp53 mutations in T1G3 transitional bladder carcinomas: independent distribution and lack of association with prognosis. Clin Cancer Res 11:5444PubMedCrossRefGoogle Scholar
  93. 93.
    Bakker AA, Wallerand H, Radvanyi F, et al. (2003) FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 63:8108–8112Google Scholar
  94. 94.
    van Rhijn BW, van der Kwast TH, Vis AN, et al. (2004) FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res 64:1911–1914PubMedCrossRefGoogle Scholar
  95. 95.
    Lopez-Knowles E, Hernandez S, Kogevinas M, et al. (2006) The p53 pathway and outcome among patients with T1G3 bladder tumors. Clin Cancer Res 12:6029–6036PubMedCrossRefGoogle Scholar
  96. 96.
    van Rhijn BW, Vis AN, van der Kwast TH, et al. (2003) Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol 21:1912–1921PubMedCrossRefGoogle Scholar
  97. 97.
    Muto S, Horie S, Takahashi S, et al. (2000) Genetic and epigenetic alterations in normal bladder epithelium in patients with metachronous bladder cancer. Cancer Res 60:4021–4025PubMedGoogle Scholar
  98. 98.
    Hartmann A, Moser K, Kriegmair M, et al. (1999) Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma. Am J Pathol 154:721–727PubMedGoogle Scholar
  99. 99.
    Obermann EC, Junker K, Stoehr R, et al. (2003) Frequent genetic alterations in flat urothelial hyperplasias and concomitant papillary bladder cancer as detected by CGH, LOH, and FISH analyses. J Pathol 199:50–57PubMedCrossRefGoogle Scholar
  100. 100.
    van Oers JM, Adam C, Denzinger S, et al. (2006) Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer 119:1212–1215PubMedCrossRefGoogle Scholar
  101. 101.
    van Rhijn BW, Montironi R, Zwarthoff EC, et al. (2002) Frequent FGFR3 mutations in urothelial papilloma. J Pathol 198:245–251PubMedCrossRefGoogle Scholar
  102. 102.
    Sung MT, Maclennan GT, Lopez-Beltran A, et al. (2006) Natural history of urothelial inverted papilloma. Cancer 107:2622–2627PubMedCrossRefGoogle Scholar
  103. 103.
    Sung MT, Eble JN, Wang MT, et al. (2006) Inverted papilloma of the urinary bladder: a molecular genetic appraisal. Mod Pathol 19:1289–1294PubMedCrossRefGoogle Scholar
  104. 104.
    Eiber M, van Oers JM, Zwarthoff EC, et al. (2007) Low frequency of molecular changes and tumor recurrence in inverted papillomas of the urinary tract. Am J Surg Pathol 31:938–946PubMedCrossRefGoogle Scholar
  105. 105.
    Hoglund M, Sall T, Heim S, et al. (2001) Identification of cytogenetic subgroups and karyotypic pathways in transitional cell carcinoma. Cancer Res 61:8241–8246PubMedGoogle Scholar
  106. 106.
    Bulashevska S, Szakacs O, Brors B, et al. (2004) Pathways of urothelial cancer progression suggested by Bayesian network analysis of allelotyping data. Int J Cancer 110:850–856PubMedCrossRefGoogle Scholar
  107. 107.
    Hoglund M, Frigyesi A, Sall T, et al. (2005) Statistical behavior of complex cancer karyotypes. Genes Chromosomes Cancer 42:327–341PubMedCrossRefGoogle Scholar
  108. 108.
    Knowles MA, Williamson M (1993) Mutation of H-ras is infrequent in bladder cancer: confirmation by single-strand conformation polymorphism analysis, designed restriction fragment length polymorphisms, and direct sequencing. Cancer Res 53:133–139PubMedGoogle Scholar
  109. 109.
    Ooi A, Herz F, Ii S, et al. (1994) Ha-ras codon 12 mutation in papillary tumors of the urinary bladder: a retrospective study. Int J Oncol 4:85–90Google Scholar
  110. 110.
    Fitzgerald JM, Ramchurren N, Rieger K, et al. (1995) Identification of H-ras mutations in urine sediments complements cytology in the detection of bladder tumors. J Natl Cancer Inst 87:129–133PubMedCrossRefGoogle Scholar
  111. 111.
    Cappellen D, De Oliveira C, Ricol D, et al. (1999) Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 23:18–20PubMedGoogle Scholar
  112. 112.
    Sibley K, Cuthbert-Heavens D, Knowles MA (2001) Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene 20:686–691PubMedCrossRefGoogle Scholar
  113. 113.
    Proctor AJ, Coombs LM, Cairns JP, Knowles MA (1991) Amplification at chromosome 11q13 in transitional cell tumours of the bladder. Oncogene 6:789–795PubMedGoogle Scholar
  114. 114.
    Bringuier PP, Tamimi Y, Schuuring E, et al. (1996) Expression of cyclin D1 and EMS1 in bladder tumours; relationship with chromosome 11q13 amplification. Oncogene 12:1747–1753PubMedGoogle Scholar
  115. 115.
    Habuchi T, Kinoshita H, Yamada H, et al. (1994) Oncogene amplification in urothelial cancers with p53 gene mutation or MDM2 amplification. J Natl Cancer Inst 86:1331–1335PubMedCrossRefGoogle Scholar
  116. 116.
    Lianes P, Orlow I, Zhang Z-F, et al. (1994) Altered patterns of MDM2 and TP53 expression in human bladder cancer. J Natl Cancer Inst 86:1325–1330PubMedCrossRefGoogle Scholar
  117. 117.
    Cairns P, Tokino K, Eby Y, Sidransky D (1994) Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res 54:1422–1424PubMedGoogle Scholar
  118. 118.
    Hornigold N, Devlin J, Davies AM, et al. (1999) Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene 18:2657–2661PubMedCrossRefGoogle Scholar
  119. 119.
    Adachi H, Igawa M, Shiina H, et al. (2003) Human bladder tumors with two-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. J Urol 170:601–604PubMedCrossRefGoogle Scholar
  120. 120.
    Shaw ME, Knowles MA (1995) Deletion mapping of chromosome 11 in carcinoma of the bladder. Genes Chromosomes Cancer 13:1–8PubMedCrossRefGoogle Scholar
  121. 121.
    Sato K, Moriyama M, Mori S, et al. (1992) An immunohistologic evaluation of c-erbB-2 gene product in patients with urinary bladder carcinoma. Cancer 70:2493–2498PubMedCrossRefGoogle Scholar
  122. 122.
    Sauter G, Moch H, Moore D, et al. (1993) Heterogeneity of erbB-2 gene amplification in bladder cancer. Cancer Res 53:2199–2203PubMedGoogle Scholar
  123. 123.
    Zaharieva BM, Simon R, Diener PA, et al. (2003) High-throughput tissue microarray analysis of 11q13 gene amplification (CCND1, FGF3, FGF4, EMS1) in urinary bladder cancer. J Pathol 201:603–608PubMedCrossRefGoogle Scholar
  124. 124.
    Cairns P, Evron E, Okami K, et al. (1998) Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene 16:3215–3218PubMedCrossRefGoogle Scholar
  125. 125.
    Cappellen D, Gil Diez de Medina S, Chopin D, et al. (1997) Frequent loss of heterozygosity on chromosome 10q in muscleinvasive transitional cell carcinomas of the bladder. Oncogene 14:3059–3066PubMedCrossRefGoogle Scholar
  126. 126.
    Habuchi T, Takahashi R, Yamada H, et al. (1993) Influence of cigarette smoking and schistosomiasis on p53 gene mutation in urothelial cancer. Cancer Res 53:3795–3799PubMedGoogle Scholar
  127. 127.
    Sidransky D, von Eschenbach A, Tsai YC, et al. (1991) Identification of p53 gene mutations in bladder cancers and urine samples. Science 252:706–709PubMedCrossRefGoogle Scholar
  128. 128.
    Spruck CH III, Rideout WM III, Olumi AF, et al. (1993) Distinct pattern of p53 mutations in bladder cancer: relationship to tobacco usage. Cancer Res 3:1162–1166Google Scholar

Copyright information

© Japan Society of Clinical Oncology 2008

Authors and Affiliations

  1. 1.Cancer Research UK Clinical Centre, Leeds Institute of Molecular MedicineSt James’s University HospitalLeedsUK

Personalised recommendations