International Journal of Clinical Oncology

, Volume 12, Issue 5, pp 327–340

The Bcr-Abl tyrosine kinase inhibitor imatinib and promising new agents against Philadelphia chromosome-positive leukemias

REVIEW ARTICLE

Abstract

Chronic myeloid leukemia (CML) was the first human malignant disease to be linked to a single, acquired genetic abnormality. Identification of the Bcr-Abl kinase fusion protein and its pivotal role in the pathogenesis of CML provided new opportunities to develop molecular-targeted therapies. Imatinib mesylate (IM, Gleevec, Novartis Pharmaceuticals, Basel, Switzerland), which specifically inhibits the autophosphorylation of the Abl TK, has improved the treatment of CML. However, resistance is often reported in patients with advanced-stage disease. Several novel TK inhibitors have been developed that override IM resistance mechanisms caused by point mutations within the Abl kinase domain. Inhibitors of Abl TK are divided into two main groups, namely, ATP-competitive and ATP noncompetitive inhibitors. The ATP-competitive inhibitors fall into two subclasses, the Src/Abl inhibitors, and the 2-phenylaminopyrimidine-based compounds. Dasatinib (formerly BMS-354825), AP23464, SKI-606, and PD166326 are classified as Src/Abl inhibitors, while nilotinib (AMN107) and INNO-406 (NS-187) belong to the latter subclass of inhibitors. Of these agents, dasatinib and nilotinib underwent clinical trials earlier than the others and favorable results are now accumulating. Clinical studies of the other compounds, including SKI-606 and INNO-406, have been performed in rapid succession. Because of their strong affinities for the ATP-binding site compared to IM, most ATP-competitive inhibitors may be effective in IM-resistant patients. However, an ATP-competitive inhibitor that can inhibit the phosphorylation of T315I Bcr-Abl has not yet been developed. Instead, ATP noncompetitive inhibitors, such as ON012380, Aurora kinase inhibitor MK0457 (VX-680), and p38 MAP kinase inhibitor BIRB-796, have been developed to address this problem. This review provides an update on the underlying pathophysiologies of disease progression and IM resistance, and discusses the development of new targeted TK inhibitors for managing CML and the importance of future strategies targeting CML stem cells.

Key words

CML Dasatinib Nilotinib SKI-606 INNO-406 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faderl, S, Talpaz, M, Estrov, Z,  et al. 1999Chronic myelogenous leukemia: biology and therapyAnn Intern Med131207219PubMedGoogle Scholar
  2. 2.
    Goldman, JM, Melo, JV 2003Chronic myeloid leukemia – advances in biology and new approaches to treatmentN Engl J Med34914511464PubMedCrossRefGoogle Scholar
  3. 3.
    Rowley, JD 1973A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa stainingNature243290293PubMedCrossRefGoogle Scholar
  4. 4.
    Heisterkamp, N, Stephenson, JR, Groffen, J,  et al. 1983Localization of the c-Abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemiaNature306239242PubMedCrossRefGoogle Scholar
  5. 5.
    Kurzrock, R, Gutterman, JU, Talpaz, M 1988The molecular genetics of Philadelphia chromosome-positive leukemiasN Engl J Med319990998PubMedCrossRefGoogle Scholar
  6. 6.
    Lugo, TG, Pendergast, AM, Muller, AJ, Witte, ON 1990Tyrosine kinase activity and transformation potency of Bcr-Abl oncogene productsScience24710791082PubMedCrossRefGoogle Scholar
  7. 7.
    Sawyers, CL 1999Chronic myeloid leukemiaN Engl J Med34013301340PubMedCrossRefGoogle Scholar
  8. 8.
    Fainstein, E, Marcelle, C, Rosner, A,  et al. 1987A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemiaNature330386388PubMedCrossRefGoogle Scholar
  9. 9.
    Sattler, M, Griffin, JD 2003Molecular mechanisms of transformation by the Bcr-Abl oncogeneSemin Hematol40410PubMedCrossRefGoogle Scholar
  10. 10.
    Wada, H, Mizutani, S, Nishimura, J,  et al. 1995Establishment and molecular characterization of a novel leukemic cell line with Philadelphia chromosome expressing p230 Bcr-Abl fusion proteinCancer Res5531923196PubMedGoogle Scholar
  11. 11.
    Melo, JV 1996The diversity of Bcr-Abl fusion proteins and their relationship to leukemia phenotypeBlood8823752384PubMedGoogle Scholar
  12. 12.
    Bolin, RW, Robinson, WA, Sutherland, J, Hamman, RF 1982Busulfan versus hydroxyurea in long-term therapy of chronic myelogenous leukemiaCancer5016831686PubMedCrossRefGoogle Scholar
  13. 13.
    Goldman, J 2003Management of chronic myeloid leukemiaSemin Hematol401103PubMedCrossRefGoogle Scholar
  14. 14.
    Kantarjian, HM, Smith, TL, O'Brien, S,  et al. 1995Prolonged survival in chronic myelogenous leukemia after cytogenetic response to interferon-alpha therapy. The Leukemia ServiceAnn Intern Med122254261PubMedGoogle Scholar
  15. 15.
    Goldman, JM 1992Bone marrow transplantation for chronic myeloid leukaemiaLeukemia62223PubMedGoogle Scholar
  16. 16.
    Kimura, S, Maekawa, T 2006

    Stem cell transplantation for Ph+ leukemias in the imatinib and post-imatinib eras

    Davidson, DF eds. Bone marrow transplantation: new research (review)Nova Science PublishersNew York138
    Google Scholar
  17. 17.
    Heisterkamp, N, Jenster, G, ten Hoeve, J,  et al. 1990Acute leukaemia in bcr/abl transgenic miceNature344251253PubMedCrossRefGoogle Scholar
  18. 18.
    Daley, GQ, Van Etten, RA, Baltimore, D 1990Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosomeScience247824830PubMedCrossRefGoogle Scholar
  19. 19.
    Pear, WS, Miller, JP, Xu, L,  et al. 1998Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrowBlood9237803792PubMedGoogle Scholar
  20. 20.
    Krause, DS, Van Etten, RA 2005Tyrosine kinases as targets for cancer therapyN Engl J Med353172187PubMedCrossRefGoogle Scholar
  21. 21.
    Skorski, T, Nieborowska-Skorska, M, Nicolaides, NC,  et al. 1994Suppression of Philadelphia1 leukemia cell growth in mice by Bcr-Abl antisense oligodeoxynucleotideProc Natl Acad Sci USA9145044508PubMedCrossRefGoogle Scholar
  22. 22.
    Maekawa, T, Kimura, S, Hirakawa, K,  et al. 1995Sequence specificity on the growth suppression and induction of apoptosis of chronic myeloid leukemia cells by Bcr-Abl antisense oligonucleotide phosphorothioatesInt J Cancer626369PubMedCrossRefGoogle Scholar
  23. 23.
    Van Etten, RA 2003c-Abl regulation: a tail of two lipidsCurr Biol13R608R610PubMedCrossRefGoogle Scholar
  24. 24.
    Smith, KM, Yacobi, R, Van Etten, RA 2003Autoinhibition of Bcr-Abl through its SH3 domainMol Cell122737PubMedCrossRefGoogle Scholar
  25. 25.
    Buchdunger, E, Zimmermann, J, Mett, H,  et al. 1996Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivativeCancer Res56100104PubMedGoogle Scholar
  26. 26.
    Schindler, T, Bornmann, W, Pellicena, P,  et al. 2000Structural mechanism for STI-571 inhibition of abelson tyrosine kinaseScience28919381942PubMedCrossRefGoogle Scholar
  27. 27.
    Gambacorti-Passerini, C, Le, CP, Mologni, L,  et al. 1997Inhibition of the Abl kinase activity blocks the proliferation of Bcr-Abl+ leukemic cells and induces apoptosisBlood Cells Mol Dis23380394PubMedCrossRefGoogle Scholar
  28. 28.
    Deininger, MW, Goldman, JM, Lydon, N,  et al. 1997The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of Bcr-Abl-positive cellsBlood9036913698PubMedGoogle Scholar
  29. 29.
    Druker, BJ, Tamura, S, Buchdunger, E,  et al. 1996Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cellsNat Med2561566PubMedCrossRefGoogle Scholar
  30. 30.
    Druker, BJ 2001Signal transduction inhibition: results from phase I clinical trials in chronic myeloid leukemiaSemin Hematol 383914CrossRefGoogle Scholar
  31. 31.
    Druker, BJ, Talpaz, M, Resta, DJ,  et al. 2001Efficacy and safety of a specific inhibitor of the Bcr-Abl tyrosine kinase in chronic myeloid leukemiaN Engl J Med34410311037PubMedCrossRefGoogle Scholar
  32. 32.
    Arnold, K 2001After 30 years of laboratory work, a quick approval for STI571J Natl Cancer Inst93972PubMedCrossRefGoogle Scholar
  33. 33.
    O'Brien, SG, Guilhot, F, Larson, RA,  et al. 2003Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemiaN Engl J Med3489941004PubMedCrossRefGoogle Scholar
  34. 34.
    Goldman, JM, Melo, JV 2003Chronic myeloid leukemia – advances in biology and new approaches to treatmentN Engl J Med34914511464PubMedCrossRefGoogle Scholar
  35. 35.
    Druker, BJ, Guilhot, F, O'Brien, SG,  et al. 2006Five-year follow-up of patients receiving imatinib for chronic myeloid leukemiaN Engl J Med35524082417PubMedCrossRefGoogle Scholar
  36. 36.
    Sawyers, CL, Hochhaus, A, Feldman, E,  et al. 2002Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II studyBlood9935303539PubMedCrossRefGoogle Scholar
  37. 37.
    Cools, J, DeAngelo, DJ, Gotlib, J,  et al. 2003A tyrosine kinase created by fusion of the PDGFA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndromeN Engl J Med34812011214PubMedCrossRefGoogle Scholar
  38. 38.
    Pardanani, A, Ketterling, RP, Brockman, SR,  et al. 2003CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapyBlood10230933096PubMedCrossRefGoogle Scholar
  39. 39.
    Golub, TR, Barker, GF, Lovett, M,  et al. 1994Fusion of the PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocationCell77307316PubMedCrossRefGoogle Scholar
  40. 40.
    Baccarani, M, Saglio, G, Goldman, J,  et al. 2006Evolving concepts in the management of chronic myeloid leukemia. Recommendations from an expert panel on behalf of the European Leukemia netBlood10818091820PubMedCrossRefGoogle Scholar
  41. 41.
    Hochhaus, A, La Rosee, P 2004Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistanceLeukemia1813211331PubMedCrossRefGoogle Scholar
  42. 42.
    Gorre, ME, Mohammed, M, Ellwood, K,  et al. 2001Clinical resistance to STI-571 cancer therapy caused by Bcr-Abl gene mutation or amplificationScience293876880PubMedCrossRefGoogle Scholar
  43. 43.
    Hegedus, T, Orfi, L, Seprodi, A,  et al. 2002Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1Biochim Biophys Acta1587318325PubMedGoogle Scholar
  44. 44.
    Burger, H, van Tol, H, Brok, M,  et al. 2005Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of theABCG2 (BcrP) and ABCB1 (MDR1) drug transport pumpsCancer Biol Ther4747752PubMedCrossRefGoogle Scholar
  45. 45.
    Kotaki, M, Motoji, T, Takanashi, M,  et al. 2003Anti-proliferative effect of the Abl tyrosine kinase inhibitor STI571 on the P-glycoprotein positive K562/ADM cell lineCancer Lett1996168PubMedCrossRefGoogle Scholar
  46. 46.
    Donato, NJ, Wu, JY, Stapley, J,  et al. 2003BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571Blood101690698PubMedCrossRefGoogle Scholar
  47. 47.
    Dai, Y, Rahmani, M, Corey, SJ,  et al. 2004A Bcr-Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2J Biol Chem2793422734239PubMedCrossRefGoogle Scholar
  48. 48.
    Ptasznik, A, Nakata, Y, Kalota, A,  et al. 2004Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, Bcr-Abl1(+) leukemia cellsNat Med1011871189PubMedCrossRefGoogle Scholar
  49. 49.
    Gambacorti-Passerini, C, Barni, R, le Coutre, P,  et al. 2000Role of alpha1 acid glycoprotein in the in vivo resistance of human Bcr-Abl(+) leukemic cells to the Abl inhibitor STI571J Natl Cancer Inst9216411650PubMedCrossRefGoogle Scholar
  50. 50.
    Thomas, J, Wang, L, Clark, RE,  et al. 2004Active transport of imatinib into and out of cells: implications for drug resistanceBlood10437393745PubMedCrossRefGoogle Scholar
  51. 51.
    Hofmann, WK, Jones, LC, Lemp, NA,  et al. 2002Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique Bcr-Abl gene mutationBlood9918601862PubMedCrossRefGoogle Scholar
  52. 52.
    Branford, S, Rudzki, Z, Walsh, S,  et al. 2003Detection of Bcr-Abl mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in theATP phosphate-binding loop (P-loop) are associated with a poor prognosisBlood102276283PubMedCrossRefGoogle Scholar
  53. 53.
    Nardi, V, Azam, M, Daley, GQ 2004Mechanisms and implications of imatinib resistance mutations in Bcr-AblCurr Opin Hematol113543PubMedCrossRefGoogle Scholar
  54. 54.
    Deininger, M, Buchdunger, E, Druker, BJ 2005The development of imatinib as a therapeutic agent for chronic myeloid leukemiaBlood10526402653PubMedCrossRefGoogle Scholar
  55. 55.
    Soverini, S, Martinelli, G, Rosti, G,  et al. 2005Abl mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid LeukemiaJ Clin Oncol2341004109PubMedCrossRefGoogle Scholar
  56. 56.
    Shah, NP, Nicoll, JM, Nagar, B,  et al. 2002Multiple Bcr-Abl kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemiaCancer Cell2117125PubMedCrossRefGoogle Scholar
  57. 57.
    Hochhaus, A 2003Cytogenetic and molecular mechanisms of resistance to imatinibSemin Hematol406979PubMedGoogle Scholar
  58. 58.
    Kantarjian, HM, Talpaz, M, Giles, F,  et al. 2006New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistanceAnn Intern Med145913923PubMedGoogle Scholar
  59. 59.
    Schindler, T, Bornmann, W, Pellicena, P,  et al. 2000Structural mechanism for STI-571 inhibition of abelson tyrosine kinaseScience28919381942PubMedCrossRefGoogle Scholar
  60. 60.
    Gambacorti-Passerini, CB, Gunby, RH, Piazza, R,  et al. 2003Molecular mechanisms of resistance to imatinib in Philadelphia chromosome-positive leukaemiasLancet Oncol47585PubMedCrossRefGoogle Scholar
  61. 61.
    Soverini, S, Martinelli, G, Rosti, G,  et al. 2005Abl mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid LeukemiaJ Clin Oncol2341004109PubMedCrossRefGoogle Scholar
  62. 62.
    Soverini, S, Martinelli, G, Amabile, M,  et al. 2004Denaturing-HPLC-based assay for detection of Abl mutations in chronic myeloid leukemia patients resistant to ImatinibClin Chem5012051213PubMedCrossRefGoogle Scholar
  63. 63.
    Cortes, J, Giles, F, O'Brien, S,  et al. 2003Result of high-dose imatinib mesylate in patients with Philadelphia chromosome-positive chronic myeloid leukemia after failure of interferon-alphaBlood1028386PubMedCrossRefGoogle Scholar
  64. 64.
    O'Brien, S, Giles, F, Talpaz, M,  et al. 2003Results of triple therapy with interferon-alpha, cytarabine, and homoharringtonine, and the impact of adding imatinib to the treatment sequence in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in early chronic phaseCancer98888893PubMedCrossRefGoogle Scholar
  65. 65.
    Kuroda, J, Kimura, S, Kobayashi, Y,  et al. 2003The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph+ leukemia activity of imatinib mesylateBlood10222292235PubMedCrossRefGoogle Scholar
  66. 66.
    Kantarjian, H, Talpaz, M, O'Brien, S,  et al. 2004High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemiaBlood10328732878PubMedCrossRefGoogle Scholar
  67. 67.
    Abram, C, Courtneidge, S 2000Src family tyrosine kinases and growth factor signalingExp Cell Res254113PubMedCrossRefGoogle Scholar
  68. 68.
    Danhauser-Riedl, S, WarmuthM, Druker BJ,  et al. 1996Activation of Src kinases p53/56lyn and p59hck by p210Bcr-Abl in myeloid cellsCancer Res5635893596PubMedGoogle Scholar
  69. 69.
    Stanglmaier, M, Warmuth, M, Kleinlein, I,  et al. 2003The interaction of the Bcr-Abl tyrosine kinase with the Src kinase Hck is mediated by multiple binding domainsLeukemia17283289PubMedCrossRefGoogle Scholar
  70. 70.
    Donato, N, Wu, J, Stapley, J,  et al. 2004Imatinib mesylate resistance through Bcr-Abl independence in chronic myelogenous leukemiaCancer Res64672677PubMedCrossRefGoogle Scholar
  71. 71.
    Hofmann, W, de Vos, S, Elashoff, D,  et al. 2002Relation between resistance of Philadelphia-chromosome positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression studyLancet359481486PubMedCrossRefGoogle Scholar
  72. 72.
    Nagar, B, Bornmann, WG, Pellicena, P,  et al. 2002Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571)Cancer Res6242364243PubMedGoogle Scholar
  73. 73.
    Klejman, A, Schreiner, SJ, Nieborowska-Skorska, M,  et al. 2002The Src family kinase Hck couples Bcr-Abl to STAT5 activation in myeloid leukemia cellsEMBO J2157665774PubMedCrossRefGoogle Scholar
  74. 74.
    Hu, Y, Liu, Y, Pelletier, S,  et al. 2004Requirement of Src kinases Lyn, Hck, and Fgr for Bcr-Abl1-induced B-lymphoblastic leukemia but not chronic myeloid leukemiaNat Genet36453461PubMedCrossRefGoogle Scholar
  75. 75.
    Ptasznik, A, Nakata, Y, Kalota, A,  et al. 2004Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug resistant, Bcr-Abl1(+) leukemia cellsNat Med1011871189PubMedCrossRefGoogle Scholar
  76. 76.
    Talpaz, M, Shah, NP, Kantarjian, H,  et al. 2006Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemiasN Engl J Med35425312541PubMedCrossRefGoogle Scholar
  77. 77.
    Shah, NP, Tran, C, Lee, FY,  et al. 2004Overriding imatinib resistance with a novel ABL kinase inhibitorScience305399401PubMedCrossRefGoogle Scholar
  78. 78.
    O'Hare, T, Walters, DK, Stoffregen, EP,  et al. 2005In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutantsCancer Res6545004555PubMedCrossRefGoogle Scholar
  79. 79.
    Weisberg, E, Manley, PW, Breitenstein, W,  et al. 2005Characterization of AMN107, a selective inhibitor of native and mutant Bcr-AblCancer Cell7129141PubMedCrossRefGoogle Scholar
  80. 80.
    Gambacorti-Passerini, C, Gasser, M, Ahmed, S,  et al. 2005Abl inhibitor BMS354825 binding mode in Abelson kinase revealed by molecular docking studiesLeukemia1912671269PubMedCrossRefGoogle Scholar
  81. 81.
    Cowan-Jacob, SW, Guez, V, Fendrich, G,  et al. 2004Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatmentMini Rev Med Chem4285299PubMedCrossRefGoogle Scholar
  82. 82.
    Lombardo, LJ, Lee, FY, Chen, P,  et al. 2004Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assaysJ Med Chem4766586661PubMedCrossRefGoogle Scholar
  83. 83.
    Tokarski, JS, Newitt, JA, Chang, CY,  et al. 2006The structure of Dasatinib (BMS-354825) bound to activated Abl kinase domain elucidates its inhibitory activity against imatinib-resistant Abl mutantsCancer Res6657905797PubMedCrossRefGoogle Scholar
  84. 84.
    Burgess, MR, Skaggs, BJ, Shah, NP,  et al. 2005Comparative analysis of two clinically active Bcr-Abl kinase inhibitors reveals the role of conformation-specific binding in resistanceProc Natl Acad Sci USA10233953400PubMedCrossRefGoogle Scholar
  85. 85.
    Soverini, S, Martinelli, G, Colarossi, S,  et al. 2007Second-line treatment with dasatinib in patients resistant to imatinib can select novel inhibitor-specific BCR-ABL mutants in Ph+ ALLLancet Oncol8273274PubMedCrossRefGoogle Scholar
  86. 86.
    Kantarjian, HM, Giles, F, Quintas-Cardama, A,  et al. 2007Important therapeutic targets in chronic myelogenous leukemiaClin Cancer Res1310891097PubMedCrossRefGoogle Scholar
  87. 87.
    Hochhaus, A, Kantarjian, H, Baccarini, M,  et al. 2006Dasatinib efficacy and safety in patients with chronic phase CML resistant or intolerant to imatinib: results of the CA180013 “START-C” phase II study (abstract 6508)J Clin Oncol24339sGoogle Scholar
  88. 88.
    Guilhot, F, Apperley, J, Kim, DW,  et al. 2007Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phaseBlood10941434150PubMedCrossRefGoogle Scholar
  89. 89.
    Cortes, J, Kim, D, Rosti, P,  et al. 2006Dasatinib (D) in patients (pts) with chronic myelogenous leukemia (CML) in myeloid blast crisis (MBC) who are imatinib-resistant (IM-R) or IM-intolerant (IM-I): results of the CA180006 “START-B” study (abstract 6529)J Clin Oncol24344sCrossRefGoogle Scholar
  90. 90.
    Coutre, S, Martinelli, G, Dombret, H,  et al. 2006Dasatinib (D) in patients (pts) with chronic myelogenous leukemia (CML) in lymphoid blast crisis (LB-CML) or Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ALL) who are imatinib (IM)-resistant (IM-R) or intolerant (IM-I): the CA180015 ‘START-L’ study (abstract 6528)J Clin Oncol24344sGoogle Scholar
  91. 91.
    Shah, N, Rousselot, P, Pasquini, R,  et al. 2006Dasatinib (D) vs high dose imatinib (IM) in patients (pts) with chronic phase chronic myeloid leukemia (CP-CML) resistant to imatinib. Results of CA180017 START-R randomized trial (abstract 6507)J Clin Oncol24338sCrossRefGoogle Scholar
  92. 92.
    Quintas-Cardama, A, Kantarjian, H, Jones, D,  et al. 2007Dasatinib (BMS-354825) is active in Philadelphia chromosome-positive chronic myelogenous leukemia after imatinib and nilotinib (AMN107) therapy failureBlood109497499PubMedCrossRefGoogle Scholar
  93. 93.
    Bradeen, HA, Eide, CA, O'Hare, T,  et al. 2006Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinationsBlood10823322338PubMedCrossRefGoogle Scholar
  94. 94.
    Weisberg, E, Catley, L, Wright, RD,  et al. 2007Beneficial effects of combining nilotinib and imatinib in preclinical models of Bcr-Abl+ leukemiasBlood10921122120PubMedCrossRefGoogle Scholar
  95. 95.
    Azam, M, Nardi, V, Shakespeare, WC,  et al. 2006Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistanceProc Natl Acad Sci U S A10392449249PubMedCrossRefGoogle Scholar
  96. 96.
    O'Hare, T, Pollock, R, Stoffregen, EP,  et al. 2004Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: implications for CMLBlood10425322539PubMedCrossRefGoogle Scholar
  97. 97.
    Golas, JM, Arndt, K, Etienne, C,  et al. 2003SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude miceCancer Res63375381PubMedGoogle Scholar
  98. 98.
    http://www.clinicaltrials.gov/ct/show/NCT00261846?order=2. Accessed 10 May 2007Google Scholar
  99. 99.
    http://www.clinicaltrials.gov/ct/show/NCT00195260?order=1. Accessed 11 Jul 2007Google Scholar
  100. 100.
    Golas, JM, Lucas, J, Etienne, C,  et al. 2005SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft modelsCancer Res6553585364PubMedCrossRefGoogle Scholar
  101. 101.
    Sattler, M, Mohi, MG, Pride, YB,  et al. 2002Critical role for Gab2 in transformation by Bcr-AblCancer Cell1479492PubMedCrossRefGoogle Scholar
  102. 102.
    Weisberg, E, Manley, PW, Breitenstein, W,  et al. 2005Characterization of AMN107, a selective inhibitor of native and mutant Bcr-AblCancer Cell7129141PubMedCrossRefGoogle Scholar
  103. 103.
    O'Hare, T, Walters, DK, Stoffregen, EP,  et al. 2005In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutantsCancer Res6545004555PubMedCrossRefGoogle Scholar
  104. 104.
    Golemovic, M, Verstovsek, S, Giles, F,  et al. 2005AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemiaClin Cancer Res1149414947PubMedCrossRefGoogle Scholar
  105. 105.
    Kantarjian, H, Giles, F, Wunderle, L,  et al. 2006Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALLN Engl J Med35425422551PubMedCrossRefGoogle Scholar
  106. 106.
    Jabbour, E, Giles, F, Cortes, J,  et al. 2006Preliminary activity of AMN107, a novel potent oral selective Bcr-Abl tyrosine kinase inhibitor, in newly diagnosed Philadelphia chromosome (Ph)-positive chronic phase chronic myelogenous leukemia (CML-CP)J Clin Oncol246591sGoogle Scholar
  107. 107.
    Kimura, S, Naito, H, Segawa, H,  et al. 2005NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemiaBlood10639483954PubMedCrossRefGoogle Scholar
  108. 108.
    Asaki, T, Sugiyama, Y, Hamamoto, T,  et al. 2006Design and synthesis of 3-substituted benzamide derivatives as Bcr-Abl kinase inhibitorsBioorg Med Chem Lett1614211425PubMedCrossRefGoogle Scholar
  109. 109.
    Naito, H, Kimura, S, Nakaya, Y,  et al. 2006In vivo inhibitory effect of NS-187, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor, on the proliferation of leukemic cells harbouring Abl kinase domain mutationsLeuk Res3014431446PubMedCrossRefGoogle Scholar
  110. 110.
    Yokota, A, Kimura, S, Masuda, S,  et al. 2007INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system and cyclosporine A augments its in vivo activityBlood109306314PubMedCrossRefGoogle Scholar
  111. 111.
    Craig, AR, Kantarjian, HM, Cortes, JE,  et al. 2007A phase I study of INNO-406, a dual inhibitor of Abl and Lyn kinases, in adult patients with Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) or acute lymphocytic leukemia (ALL) relapsed, refractory, or intolerant of imatinib (abstract 7046)J Clin Oncol2518sGoogle Scholar
  112. 112.
    Gumireddy, K, Baker, SJ, Cosenza, SC,  et al. 2005A non-ATP-competitive inhibitor of Bcr-Abl overrides imatinib resistanceProc Natl Acad Sci U S A10219921997PubMedCrossRefGoogle Scholar
  113. 113.
    Giet, R, Prigent, C 1999Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinasesJ Cell Sci11235913601PubMedGoogle Scholar
  114. 114.
    Harrington, EA, Bebbington, D, Moore, J,  et al. 2004VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivoNat Med10262267PubMedCrossRefGoogle Scholar
  115. 115.
    Young, MA, Shah, NP, Chao, LH,  et al. 2006Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680Cancer Res6610071014PubMedCrossRefGoogle Scholar
  116. 116.
    Giles, FJ, Cortes, J, Jones, D,  et al. 2007MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutationBlood109500502PubMedCrossRefGoogle Scholar
  117. 117.
    http://www.clinicaltrials.gov/ct/show/NCT00405054?order=1. Accessed 1 Aug 2007Google Scholar
  118. 118.
    Carter, TA, Wodicka, LM, Shah, NP,  et al. 2005Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinasesProc Natl Acad Sci USA1021101111016PubMedCrossRefGoogle Scholar
  119. 119.
    O'Hare, T, Druker, BJ 2005BIRB-796 is not an effective ABL(T315I) inhibitorNat Biotechnol2312091210PubMedCrossRefGoogle Scholar
  120. 120.
    Burley SK (2005) Application of FAST™ fragment-based lead discovery and structure-guided design to discovery of small molecule inhibitors of BCR-ABL tyrosine kinase active against T315I imanitib-resistant mutant (abstract 698[) Blood 106:11 (Suppl) 206aGoogle Scholar
  121. 121.
    Barnes, DJ, Melo, JV 2006Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemiaCell Cycle528622866PubMedGoogle Scholar
  122. 122.
    Jorgensen, HG, Holyoake, TL 2001A comparison of normal and leukemic stem cell biology in chronic myeloid leukemiaHematol Oncol1989106PubMedCrossRefGoogle Scholar
  123. 123.
    Dean, M, Fojo, T, Bates, S 2005Tumour stem cells and drug resistanceNat Rev Cancer5275284PubMedCrossRefGoogle Scholar
  124. 124.
    Holyoake, T, Jiang, X, Eaves, C,  et al. 1999Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemiaBlood9420562064PubMedGoogle Scholar
  125. 125.
    Maekawa, T, Metcalf, D 1991

    Suppression of clonogenicity of human leukemic cells by recombinant hemopoietic factors

    Miyazaki, TTakaku, FUchino, H eds. Myelodysplastic syndrome and cytokinesElsevierAmsterdam101110
    Google Scholar
  126. 126.
    Graham, SM, Jorgensen, HG, Allan, E,  et al. 2002Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitroBlood99319325PubMedCrossRefGoogle Scholar
  127. 127.
    Holtz, MS, Slovak, ML, Zhang, F,  et al. 2002Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferationBlood9937923800PubMedCrossRefGoogle Scholar
  128. 128.
    Bhatia, R, Holtz, M, Niu, N,  et al. 2003Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatmentBlood10147014707PubMedCrossRefGoogle Scholar
  129. 129.
    Copland, M, Hamilton, A, Elrick, LJ,  et al. 2006Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML, but does not eliminate the quiescent fractionBlood10745324539PubMedCrossRefGoogle Scholar
  130. 130.
    Jorgensen, HG, Allan, EK, Jordanides, NE,  et al. 2007Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cellsBlood10940164019PubMedCrossRefGoogle Scholar
  131. 131.
    Michor, F, Hughes, TP, Iwasa, Y,  et al. 2005Dynamics of chronic myeloid leukaemiaNature43512671270PubMedCrossRefGoogle Scholar
  132. 132.
    Komarova, NL, Wodarz, D 2005Drug resistance in cancer: principles of emergence and preventionProc Natl Acad Sci USA10297149719PubMedCrossRefGoogle Scholar
  133. 133.
    O'Hare, T, Walters, DK, Stoffregen, EP,  et al. 2005Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinibClin Cancer Res1169876993PubMedCrossRefGoogle Scholar
  134. 134.
    White, DL, Saunders, VA, Quinn, SR,  et al. 2007Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugsBlood10936093610PubMedCrossRefGoogle Scholar

Copyright information

© The Japan Society of Clinical Oncology 2007

Authors and Affiliations

  1. 1.Department of Transfusion Medicine and Cell TherapyKyoto University HospitalSakyo-kuJapan

Personalised recommendations