Population Ecology

, Volume 57, Issue 4, pp 581–589 | Cite as

Long-term pattern of population dynamics in the field vole from central Europe: cyclic pattern with amplitude dampening

  • Ana Gouveia
  • Vladimír Bejček
  • Jiří Flousek
  • František Sedláček
  • Karel Šťastný
  • Jan Zima
  • Nigel G. Yoccoz
  • Nils Chr. Stenseth
  • Emil Tkadlec
Original article

Abstract

The subject of population cycles is regarded as controversial due to a number of unsettled questions such as whether or not cyclic patterns are governed by the same processes at high and low latitudes in Europe. Recent evidence suggests that the dynamics at high and low latitudes share the common temporal pattern of vole dynamics referred to as collapsing population cycles. Despite concurrent interest, the key contention around the causal mechanisms that drive population cycles remains a hot topic in ecology. The aims of this study are to supplement information on the seasonal population dynamics of the field vole Microtus agrestis in the Czech Republic by analysing 25 years of time series data. By applying robust estimation procedures, we estimated several parameters to describe population dynamics, such as population variability, amplitude dampening, cycle period, order of the dynamics and the structure of density dependence. The parameters indicate that field vole dynamics in central Europe are highly variable, cyclic dynamics of order two, with peaks in abundance occurring regularly at intervals of 4–5 years. In addition to exhibiting population cycles, the field vole populations show a pattern of dampened amplitude as observed elsewhere in Europe, including northern latitudes. By analysing temporal trends in seasonal abundances, population growth rates and environmental temperatures, we did not obtain evidence to support the hypothesis that amplitude dampening results from the negative effect of increasingly mild winters on winter population growth rates.

Keywords

Density-dependence structure Microtus agrestis Population cycles Time series analysis 

Notes

Acknowledgments

We are grateful to Atle Mysterud, Torbjørn Ergon, Kyrre Kausrud and Frederic Barraquand for their advice and suggestions.

Compliance with ethical standards

The research was carried out in accordance with ethical standards following the Act No. 246/1992 Coll. on the protection of animals against cruelty. The work was funded by grant IGA_PřF_2014021 to E.T., POSTUP I project CZ.1.07/2.3.00/30.0004 to E. T. and A. G., the Grant 159/2013/P Grant Agency of the University of South Bohemia (GAJU) to F. S., and the projects of Faculty of Environmental Sciences Czech University of Life Sciences Prague IGA FES 4290013123166 and LČR 41110-1644-6404 to V. B. and K. Š.

Conflict of interest

The authors have declared that no competing interests exist.

References

  1. Aars J, Ims RA (2002) Intrinsic and climatic determinants of population demography: the winter dynamics of tundra vole. Ecology 83:3449–3456CrossRefGoogle Scholar
  2. Barraquand F, Pinot A, Yoccoz N, Bretagnolle V (2014) Overcompensation and phase effects in a cyclic common vole population: between first and second-order cycles. J Anim Ecol 83:1367–1378CrossRefPubMedGoogle Scholar
  3. Berryman A, Turchin P (2001) Identifying the density dependent structure underlying ecological time series. Oikos 92:265–270CrossRefGoogle Scholar
  4. Bierman SM, Fairbairn JP, Petty SJ, Elston DA, Tidhar D, Lambin X (2006) Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.). Am Nat 167:583–590CrossRefPubMedGoogle Scholar
  5. Bjørnstad ON, Grenfell BT (2001) Noisy clockwork: time series analysis of population fluctuations in animals. Science 293:638–643CrossRefPubMedGoogle Scholar
  6. Bjørnstad ON, Falck W, Stenseth NC (1995) A geographic gradient in small rodent density fluctuations: a statistical modelling approach. Proc R Soc B-Biol Sci 262:127–133CrossRefGoogle Scholar
  7. Boonstra R, Krebs CJ (2012) Population dynamics of red-backed voles (Myodes) in North America. Oecologia 168:601–620CrossRefPubMedGoogle Scholar
  8. Brommer J, Pietia IH, Ahola K, Karell P, Karstinen T, Kolunen H (2010) The return of the vole cycle in southern Finland refutes the generality of loss of cycles through ‘climatic forcing’. Glob Change Biol 16:577–586CrossRefGoogle Scholar
  9. Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  10. Cornulier T, Yoccoz NG, Bretagnolle V, Brommer JE, Butet A, Ecke F, Elston DA, Framstad E, Henttonen H, Hörnfeldt B, Huitu O, Imholt C, Ims RA, Jacob J, Jedrzejewska B, Millon A, Petty SJ, Pietiäinen H, Tkadlec E, Zub K, Lambin X (2013) Europe-wide dampening of population cycles in keystone herbivores. Science 340:63–66CrossRefPubMedGoogle Scholar
  11. Coulson T, Milner-Gulland EJ, Clutton-Brock T (2000) The relative roles of density and climatic variation on population dynamics and fecundity rates in three contrasting ungulate species. Proc R Soc B-Biol Sci 267:1771–1779CrossRefGoogle Scholar
  12. Ecke F, Christensen P, Sandström P, Hörnfeldt B (2006) Identification of landscape elements related to local declines of a grey-sided vole population. Landsc Ecol 21:485–497CrossRefGoogle Scholar
  13. Ecke F, Christensen P, Rentz R, Nilsson M, Sandström P, Hörnfeldt B (2010) Landscape structure and the long-term decline of cyclic grey-sided voles in Fennoscandia. Landsc Ecol 25:551–560CrossRefGoogle Scholar
  14. Elton CS (1924) Periodic fluctuations in the numbers of animals: their causes and effects. J Exp Biol 2:119–163Google Scholar
  15. Flousek J (1997) Impact of air pollution on montane forests. In: Messerli B, Ives JD (eds) Mountains of the world: a global priority. Parthenon Publishing, London, pp 302–303Google Scholar
  16. Flousek J, Roberts GCS (eds) (1995) Mountain national parks and biosphere reserves: monitoring and management. In: Proceedings of the international conference, Spindleruv Mlyn, Czech Republic, September 1993, pp 1–165Google Scholar
  17. Forbes KM, Stuart P, Mappes T, Hoset KS, Henttonen H, Huitu O (2014) Diet quality limits summer growth of field vole populations. PLoS One 9(3):e91113PubMedCentralCrossRefPubMedGoogle Scholar
  18. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511CrossRefGoogle Scholar
  19. Goswami VR, Getz LL, Hostetler JA, Ozgul A, Oli MK (2011) Synergistic influences of phase, density, and climatic variation on the dynamics of fluctuating populations. Ecology 92:1680–1690CrossRefPubMedGoogle Scholar
  20. Hansen TF, Stenseth NC, Henttonen H, Tast J (1999) Interspecific and intraspecific competition as causes of direct and delayed density dependence in a fluctuating vole population. Proc Natl Acad Sci USA 96:986–991PubMedCentralCrossRefPubMedGoogle Scholar
  21. Hanski I, Henttonen H (1996) Predation on competing rodent species: a simple explanation of complex patterns. J Anim Ecol 65:220–232CrossRefGoogle Scholar
  22. Henttonen H, McGuire AD, Hansson L (1985) Comparisons of amplitude and frequencies (spectral analyses) of density variations in long-term data sets of Clethrionomys species. Ann Zool Fenn 22:221–227Google Scholar
  23. Hörnfeldt B (2004) Long-term decline in numbers of cyclic voles in boreal Sweden: analysis and presentation of hypotheses. Oikos 107:376–392CrossRefGoogle Scholar
  24. Hörnfeldt B, Hipkiss T, Eklund U (2005) Fading out of vole and predator cycles? Proc R Soc B-Biol Sci 272:2045–2049CrossRefGoogle Scholar
  25. Hoset KS, Galliard J-F, Gunderson G (2009) Demographic responses to a mild winter in enclosed vole populations. Popul Ecol 51:279–288CrossRefGoogle Scholar
  26. Ims RA, Henden J-A, Killengreen S (2008) Collapsing population cycles. Trends Ecol Evol 23:79–86CrossRefPubMedGoogle Scholar
  27. Kausrud KL, Mysterud A, Steen H, Vik JO, Østbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhøy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456:93–97CrossRefPubMedGoogle Scholar
  28. Kéry M, Schaub M (2012) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, AmsterdamGoogle Scholar
  29. Korpela K, Delgado M, Henttonen H, Korpimäki E, Koskela E, Ovaskainen O, Pietiäinen H, Sundell J, Yoccoz NG, Huitu O (2013) Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob Change Biol 19:697–710CrossRefGoogle Scholar
  30. Korpela K, Helle P, Henttonen H, Korpimäki E, Koskela E, Ovaskainen O, Pietiäinen H, Sundell J, Valkama J, Huitu O (2014) Predator–vole interactions in northern Europe: the role of small mustelids revised. Proc R Soc B-Biol Sci 281(1797):2014–2119CrossRefGoogle Scholar
  31. Korslund L, Steen H (2006) Small rodent winter survival: snow conditions limit access to food resources. J Anim Ecol 75:156–166CrossRefPubMedGoogle Scholar
  32. Lambin X, Petty SJ, Mackinnon JL (2000) Cyclic dynamics in field vole populations and generalist predation. J Anim Ecol 69:106–118CrossRefGoogle Scholar
  33. Lambin X, Brettagnolle V, Yoccoz NG (2006) Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern? J Anim Ecol 75:340–349CrossRefPubMedGoogle Scholar
  34. Langvatn R, Albon SD, Burkey T, Clutton-Brock TH (1996) Climate, plant phenology and variation in age of first reproduction in a temperate herbivore. J Anim Ecol 65:653–670CrossRefGoogle Scholar
  35. Link WA, Nichols JD (1994) On the importance of sampling variance to investigations of temporal variation in animal population size. Oikos 69:539–544CrossRefGoogle Scholar
  36. Merritt JF, Lima M, Bozinovic F (2001) Seasonal regulation in fluctuating small mammal populations: feedback structure and climate. Oikos 94:505–514CrossRefGoogle Scholar
  37. Nieminen P, Hohtola E, Mustonen A-M (2013) Body temperature rhythms in Microtus voles during feeding, food deprivation, and winter acclimatization. J Mammal 94:591–600CrossRefGoogle Scholar
  38. O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118CrossRefGoogle Scholar
  39. Owen-Smith N, Mason DR (2005) Comparative changes in adult vs. juvenile survival affecting population trends of African ungulates. J Anim Ecol 74:762–774CrossRefGoogle Scholar
  40. Royama T (1992) Analytical population dynamics. Chapman and Hall, LondonCrossRefGoogle Scholar
  41. Schulze E-D, Lange OL, Oren R (1989) Forest decline and air pollution: a study of spruce (Picea abies) on acid soils. Springer, BerlinCrossRefGoogle Scholar
  42. Stenseth NC, Bjornstad O, Saitoh T (1996a) A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan. Proc R Soc B-Biol Sci 263:1117–1126CrossRefGoogle Scholar
  43. Stenseth NC, Bjornstad O, Falck W (1996b) Is spacing behaviour coupled with predation causing the microtine density cycle? A synthesis of process-oriented and pattern-oriented studies. Proc R Soc B-Biol Sci 263:1423–1435CrossRefGoogle Scholar
  44. Stenseth NC, Viljugrein H, Saitoh T, Hansen TF, Kittilsen MO, Bølviken E, Glockner F (2003) Seasonality, density dependence, and population cycles in Hokkaido voles. Proc Natl Acad Sci USA 100:11478–11483PubMedCentralCrossRefPubMedGoogle Scholar
  45. Tkadlec E, Stenseth NC (2001) A new geographical gradient in vole population dynamics. Proc R Soc B-Biol Sci 268:1547–1552CrossRefGoogle Scholar
  46. Tkadlec E, Zboril J, Losík J, Gregor P, Lisická L (2006) Winter climate and plant productivity predict abundances of small herbivores in central Europe. Clim Res 32:99–108CrossRefGoogle Scholar
  47. Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, PrincetonGoogle Scholar
  48. Vávrová E, Cudlín O, Vavříček D, Cudlín P (2009) Ground vegetation dynamics in mountain spruce (Picea abies (L.) Karsten) forests recovering after air pollution stress impact. Plant Ecol 205:305–321CrossRefGoogle Scholar

Copyright information

© European Union 2015

Authors and Affiliations

  • Ana Gouveia
    • 1
  • Vladimír Bejček
    • 2
  • Jiří Flousek
    • 3
  • František Sedláček
    • 4
  • Karel Šťastný
    • 2
  • Jan Zima
    • 4
  • Nigel G. Yoccoz
    • 5
  • Nils Chr. Stenseth
    • 6
  • Emil Tkadlec
    • 1
    • 4
  1. 1.Department of Ecology and Environmental SciencesPalacky UniversityOlomoucCzech Republic
  2. 2.Faculty of Environmental SciencesCzech University of Life Sciences PraguePraha 6–SuchdolCzech Republic
  3. 3.Krkonoše National Park AdministrationVrchlabíCzech Republic
  4. 4.Institute of Vertebrate BiologyBrnoCzech Republic
  5. 5.Department of Arctic and Marine Biology, Faculty of BiosciencesFisheries and Economics, UiT The Arctic University of NorwayTromsøNorway
  6. 6.Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloOslo 3Norway

Personalised recommendations