Population Ecology

, Volume 57, Issue 1, pp 237–251 | Cite as

Modelling harvesting strategies for the lobster fishery in northern Europe: the importance of protecting egg-bearing females

  • Andreas Sundelöf
  • Volker Grimm
  • Mats Ulmestrand
  • Øyvind Fiksen
Original article
  • 447 Downloads

Abstract

European lobster populations in Norway and Sweden are severely reduced as a result of intense harvesting over a long time. Various alternative management options have been proposed or endorsed to both facilitate recovery and increase yield. Accordingly, Minimum Landing Size (MLS) regulations are widely used for the European lobster. We developed an individual-based population model which integrates biological knowledge about lobsters’ population dynamics to explore how available harvesting strategies and management options influence abundance and yield. The model reproduced basic features of a real lobster population in Sweden. Even for a relatively large MLS high fishing effort may still be detrimental to the long term production of the stock, while increasing the MLS further prevents this recruitment overfishing. A moratorium on berried females, in combination with the MLS appears to stabilize population fluctuations and yield, leading to higher yield for all MLS’s considered. The female moratorium harvesting strategy also performed better than a maximum size limit. Yield per recruit calculations gave similar quantitative results, and also shows that a larger MLS reduce the risk of growth overfishing. A smaller MLS enables the harvest of many individuals but is very sensitive to increase in effort which easily promotes overfishing.

Keywords

European lobster Female moratorium Individual-based model Management Minimum landing size Yield per recruit (YPR) 

Supplementary material

10144_2014_460_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1045 kb)
10144_2014_460_MOESM2_ESM.pdf (258 kb)
Supplementary material 2 (PDF 257 kb)
10144_2014_460_MOESM3_ESM.pdf (297 kb)
Supplementary material 3 (PDF 297 kb)

References

  1. Agnalt A-L (2008) Fecundity of the European lobster (Homarus gammarus) off southwestern Norway after stock enhancement; do cultured females produce as many eggs as wild females? ICES J Mar Sci 65:164–170CrossRefGoogle Scholar
  2. Agnalt A-L, Kristiansen TS, Jørstad KE (2007) Growth, reproductive cycle, and movement of berried European lobsters (Homarus gammarus) in a local stock off southwestern Norway. ICES J Mar Sci 64:288–297CrossRefGoogle Scholar
  3. Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc Natl Acad Sci USA 106:9987–9994CrossRefPubMedCentralPubMedGoogle Scholar
  4. Annis ER, Incze LS, Wolff N, Steneck RS (2007) Estimates of in situ larval development times for the lobster, Homarus americanus. J Crust Biol 27:454–462CrossRefGoogle Scholar
  5. ARC Centre of Excellence in Coral Reef Studies (2010). Ending the oceans’ ‘tragedy of the commons’. ScienceDaily. http://www.sciencedaily.com/releases/2010/09/100914095930.htm. Retrieved 16 July 2013
  6. Axelsson G (1944) Det svenska hummerfisket och fångstens avsättning. Seminariearbete, Handelshögskolan i Göteborg 1942, Wezäta-Göteborgslitografen AB, Göteborg (in Swedish)Google Scholar
  7. Baranov TI (1918) On the question of the biological basis of fisheries. Nauch Issledov Iktiol Inst Izv I 1:81–128 (in Russian)Google Scholar
  8. Beverton RJH (1992) Patterns of reproductive strategy parameters in some marine teleost fishes. J Fish Biol 41:137–160CrossRefGoogle Scholar
  9. Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Chapman and Hall, LondonGoogle Scholar
  10. Butler MJ IV (2003) Incorporating ecological process and environmental change into spiny lobster population models using a spatially-explicit, individual-based approach. Fish Res 65:63–79CrossRefGoogle Scholar
  11. Chang Y-J, Sun C-L, Chen Y, Zhang Y, Yeh S-Z (2011) Incorporating climate changes into population dynamics modeling: an individual-based modeling approach for lobster. Can J Fish Aquat Sci 68:122–136CrossRefGoogle Scholar
  12. DiNardo GT, DeMartini EE, Haight WR (2002) Estimates of lobster-handling mortality associated with the Northwestern Hawaiian Islands lobster-trap fishery. Fish Bull 100:128–133Google Scholar
  13. Factor JR (1995) Biology of the lobster Homarus americanus. Academic Press, San DiegoGoogle Scholar
  14. Fernandes PG, Cook RM (2013) Reversal of fish stock decline in the northeast Atlantic. Curr Biol 23:432–1437CrossRefGoogle Scholar
  15. Fiskeriverket S (2004) Fiskeriverkets föreskrifter om fiske i Skagerrak, Kattegatt och Östersjön. FIFS 2004:36 (in Swedish)Google Scholar
  16. Fiskeriverket S (2009) Fiskbestånd och miljö i hav och sötvatten—Resurs-och miljööversikt. Rolf Tryckeri, Skövde (in Swedish)Google Scholar
  17. Gosselin T, Sainte-Marie B, Bernatchez L (2003) Patterns of sexual cohabitation and female ejaculate storage in the American lobster (Homarus americanus). Behav Ecol Sociobiol 55:151–160CrossRefGoogle Scholar
  18. Gosselin T, Sainte-Marie B, Bernatchez L (2005) Geographic variation of multiple paternity in the American lobster, Homarus americanus. Mol Ecol 14:1517–1525CrossRefPubMedGoogle Scholar
  19. Grimm V, Railsback S (2005) Individual based modeling and ecology. Princeton University Press, Princeton and OxfordGoogle Scholar
  20. Grimm V, Railsback SF (2012) Pattern-oriented modelling: a “multiscope” for predictive systems ecology. Philos Trans R Soc B Biol Sci 367:298–310CrossRefGoogle Scholar
  21. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991CrossRefPubMedGoogle Scholar
  22. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz S, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126CrossRefGoogle Scholar
  23. Grimm V, Berger U, DeAngelis D, Polhill G, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Model 221:2760–2768CrossRefGoogle Scholar
  24. Grimm V, Augusiak J, Focks A, Frank BM, Gabsi F, Johnston ASA, Liu C, Martin BT, Meli M, Radchuk V, Thorbek P, Railsback SF (2014) Towards better modelling and decision support: documenting model development, testing, and analysis using TRACE. Ecol Model 280:129–139CrossRefGoogle Scholar
  25. Hardin G (1968) The tragedy of the commons. Science 162:1243–1248CrossRefPubMedGoogle Scholar
  26. Incze L, Xue H, Wolff N, Xu D, Wilson C, Steneck R, Wahle R, Lawton P, Pettigrew N, Chen Y (2010) Connectivity of lobster populations in the coastal Gulf of Maine. Part II. Coupled biophysical dynamics. Fish Oceanogr 19:1–20CrossRefGoogle Scholar
  27. Jørgensen C, Enberg K, Dunlop ES, Arlinghaus R, Boukal DS, Brander K, Ernande B, Gårdmark A, Johnston F, Matsumura S, Pardoe H, Raab K, Silva A, Vainikka A, Dieckmann U, Heino M, Rijnsdorp AD (2007) Managing evolving fish stocks. Science 318:1247–1248CrossRefPubMedGoogle Scholar
  28. Jørgensen C, Ernande B, Fiksen Ø (2009) Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evol Appl 2:356–370CrossRefPubMedCentralPubMedGoogle Scholar
  29. Kleiven AR, Olsen EM, Vølstad JH (2012) Total catch of a red-listed marine species is an order of magnitude higher than official data. PLoS One 7(2):e31216CrossRefPubMedCentralPubMedGoogle Scholar
  30. Linnane A, Ball B, Mercer JP, Browne R, van der Meeren G, Ringvold H, Bannister C, Mazzoni D, Munday B (2001) Searching for the early benthic phase (EBP) of the European lobster: a trans-European study of cobble fauna. Hydrobiologia 465:63–72CrossRefGoogle Scholar
  31. Madsen N, Feekings J, Lewy P (2013) Discarding of plaice (Pleuronectes platessa) in the Danish North Sea trawl fishery. J Sea Res 75:129–134CrossRefGoogle Scholar
  32. Moland E, Olsen EM, Stenseth NC (2010) Maternal influences on offspring size variation and viability in wild European lobster Homarus gammarus. Mar Ecol Prog Ser 400:165–173CrossRefGoogle Scholar
  33. Moland E, Olsen EM, Knutsen H, Knutsen JA, Enersen SE, André C, Stenseth NC (2011) Activity patterns of wild European lobster Homarus gammarus in coastal marine reserves: implications for future reserve design. Mar Ecol Prog Ser 429:197–207CrossRefGoogle Scholar
  34. Moland E, Ulmestrand M, Olsen EM, Stenseth NC (2013a) Long-term decrease in sex-specific natural mortality of European lobster within a marine protected area. Mar Ecol Prog Ser 491:153–164CrossRefGoogle Scholar
  35. Moland E, Olsen EM, Knutsen H, Garrigou P, Espeland SH, Kleiven AR, André C, Knutsen JA (2013b) Lobster and cod benefit from small-scale northern marine protected areas: inference from an empirical before–after control-impact study. Proc R Soc B Biol Sci 280:20122679CrossRefGoogle Scholar
  36. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283CrossRefPubMedGoogle Scholar
  37. NDF (2011) Norwegian Directorate of Fisheries website presenting regulations on lobster harvesting [online] (in Norwegian). http://www.fiskeridir.no/fritidsfiske2/fritidsfiske/hummerfiske, http://www.fiskeridir.no/fritidsfiske/aktuelt/2009/0909/nye-regler-for-fangst-av-krabbe-og-hummer-i-fritidsfiske. Accessed 10 November 2011
  38. Øresland V (2008) Description of the IMR standard light trap and the vertical distribution of some decapod larvae (Homarus and Nephrops). W Indian Ocean J Mar Sci 6:225–231Google Scholar
  39. Peterson I, Wroblewski S (1984) Mortality rate of fishes in the pelagic ecosystem. Can J Fish Aquat Sci 41:1117–1120CrossRefGoogle Scholar
  40. Railsback SF, Grimm V (2012) Agent-based and individual-based modeling: a practical introduction. Princeton University Press, PrincetonGoogle Scholar
  41. Sadykova D, Hessen DO, Shweder T (2011) Saving the largest makes a difference: exploring effects of harvest regulations by model simulations for noble crayfish, Astacus astacus. Fish Manag Ecol 18:307–313CrossRefGoogle Scholar
  42. Schmolke A, Thorbek P, DeAngelis DL, Grimm V (2010) Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol Evol 25:479–486CrossRefPubMedGoogle Scholar
  43. Sheehy MRJ, Bannister RCA, Wickins JF, Shelton PMJ (1999) New perspectives on the growth and longevity of the European lobster (Homarus gammarus). Can J Fish Aquat Sci 56:1904–1915CrossRefGoogle Scholar
  44. Skog M (2009) Intersexual differences in European lobster (Homarus gammarus): recognition mechanisms and agonistic behaviours. Behaviour 146:1071–1091CrossRefGoogle Scholar
  45. Smith IP, Jensen AC (2008) Dynamics of closed areas in Norway lobster fisheries. ICES J Mar Sci 65:1600–1609CrossRefGoogle Scholar
  46. Solhaug T (1983) De norske fiskeriers historie, 1815-1880, 2nd edn. Universitetsforlaget, AS Fotosats trykk, Bergen (in Norwegian)Google Scholar
  47. Sundelöf A, Bartolino V, Ulmestrand M, Cardinale M (2013) Multi-annual fluctuations in reconstructed historical time-series of a European lobster (Homarus gammarus) population disappear at increased exploitation Levels. PLoS One 8(4):e58160CrossRefPubMedCentralPubMedGoogle Scholar
  48. Svedäng H et al (2014) Comments to Froese (2008): size matters: Ne quid nimis. Fish Res 149:74–75CrossRefGoogle Scholar
  49. Ulmestrand M (2003) Reproduction of female lobsters (Homarus gammarus) on the Swedish west coast. In: Comeau M (ed) Workshop on lobster (Homarus americanus and H. gammarus) reference points for fishery management held in Tracadie-Sheila. New Brunswick, pp 8–10 (abstracts and proceedings. Can Tech Rep Fish Aquat Sci 2506:vii + 39p)Google Scholar
  50. Ulmestrand M, Loo L-O (2009) Fem studier om fritidsfiske 2002–2007. FINFO 2009:1 (in Swedish)Google Scholar
  51. van der Meeren GI (2000) Predation on hatchery-reared lobsters released in the wild. Can J Fish Aquat Sci 57:1794–1803CrossRefGoogle Scholar
  52. Varpe Ø, Fiksen Ø, Slotte A (2005) Meta-ecosystems and biological energy transport from ocean to coast: the ecological importance of herring migration. Oecologia 146:443–451CrossRefPubMedGoogle Scholar
  53. Wahle RA (2003) Revealing stock-recruitment relationships in lobsters and crabs: is experimental ecology the key? Fish Res 65:3–32CrossRefGoogle Scholar
  54. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PA, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding global fisheries. Science 325:578–585CrossRefPubMedGoogle Scholar
  55. Zhang Y, Chen Y, Chang Y (2011) Estimating biological reference points using individual-based per-recruit models for the Gulf of Maine American lobster, Homarus americanus, fishery. Fish Res 108:385–392CrossRefGoogle Scholar
  56. Zhou SJ, Smith ADM, Punt AE, Richardson AJ, Gibbs M, Fulton EA, Pascoe S, Bulman C, Bayliss P, Sainsbury K (2010) Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proc Natl Acad Sci USA 107:9485–9489CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer Japan 2014

Authors and Affiliations

  • Andreas Sundelöf
    • 1
    • 2
  • Volker Grimm
    • 3
    • 4
  • Mats Ulmestrand
    • 2
  • Øyvind Fiksen
    • 1
    • 5
  1. 1.Department of BiologyUniversity of BergenBergenNorway
  2. 2.Department of Aquatic Resources, Institute of Marine ResearchSwedish University for Agricultural SciencesLysekilSweden
  3. 3.Department of Ecological ModellingHelmholtz Center for Environmental Research - UFZLeipzigGermany
  4. 4.Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  5. 5.The Hjort Centre for Marine Ecosystem DynamicsBergenNorway

Personalised recommendations