Advertisement

Parameter estimation for reaction-diffusion models of biological invasions

Abstract

In this note, we discuss parameter estimation for population models based on partial differential equations (PDEs). Parametric estimation is first considered in the perspective of inverse problems (i.e., when the observation of the solution of a PDE is exactly observed or noise-free). Then, adopting the point of view of statistics, we turn to parametric estimation for PDEs using more realistic noisy measurements. The approach that we describe uses mechanistic-statistical models which combine (1) a PDE-based submodel describing the dynamic under study and (2) a stochastic submodel describing the observation process. This Note is expected to contribute to bridge the gap between modelers using PDEs and population ecologists collecting and analyzing spatio-temporal data.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Berliner LM (2003) Physical-statistical modeling in geophysics. J Geophys Res 108:8776

  2. Berliner LM, Cressie N, Jezek K, Kim Y, Lam CQ, van der Veen CJ (2008) Equilibrium dynamics of ice streams: a bayesian statistical analysis. Stat Method Appl 17:145–165

  3. Buckland ST, Newman KB, Thomas L, Koesters NB (2004) State-space models for the dynamics of wild animal populations. Ecol Model 171:157–175

  4. Campbell EP (2004) An introduction to physical-statistical modelling using Bayesian methods. Tech Rep 49, CSIRO Mathematical and Information Sciences, Australia

  5. Casella G (1985) An introduction to empirical Bayes data analysis. Am Stat 39:83–87

  6. Choulli M (2009) Une introduction aux probl‘emes inverses elliptiques et paraboliques. Springer, Paris (in French)

  7. Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken

  8. Dacunha-Castelle D, Duflo M (1982) Probabilités et Statistiques. Probèlmes à Temps Mobile, vol 2. Masson, Paris (in French)

  9. Efron B (2013) Bayes’ theorem in the 21st century. Science 340:1177–1178

  10. Evans LC (1998) Partial differential equations. University of California, Berkeley

  11. Evensen G (2009) Data assimilation: the ensemble Kalman filter, 2nd edn. Springer-Verlag, Berlin

  12. Hadamard J (1923) Lectures on Cauchy’s problem in linear partial differential equations. Dover Publications, New York

  13. Harmon R, Challenor P (1997) A Markov chain Monte Carlo method for estimation and assimilation into models. Ecol Model 101:41–59

  14. Ionides EL, Breto C, King AA (2006) Inference for nonlinear dynamical systems. Proc Natl Acad Sci USA 103:18438–18443

  15. Isakov V (1990) Inverse source problems. American Mathematical Society, Providence

  16. Jones E, Parslow J, Murray L (2010) A Bayesian approach to state and parameter estimation in a Phytoplankton–Zooplankton model. Aust Meteorol Ocean 59:7–16

  17. Marin J-M, Robert C (2007) Bayesian core: a practical approach to computational Bayesian statistics. Springer-Verlag, New York

  18. Murray JD (2002) Mathematical biology, 3rd edn. Springer-Verlag, Berlin

  19. Okubo A, Levin SA (2002) Diffusion and ecological problems—modern perspectives, 2nd edn. Springer-Verlag, New York

  20. Ramsay JO, Hooker G, Campbell D, Cao J (2007) Parameter estimation for differential equations: a generalized smoothing approach. J R Stat Soc B 69:741–796

  21. Rivot E, Prévost E, Parent E, Baglinière JL (2004) A Bayesian state-space modelling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data. Ecol Model 179:463–485

  22. Robert CP, Casella G (1999) Monte Carlo statistical methods. Springer, New York

  23. Roques L, Cristofol M (2010) On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation. Nonlinearity 23:675–686

  24. Roques L, Soubeyrand S, Rousselet J (2011) A statistical-reaction-diffusion approach for analyzing expansion processes. J Theor Biol 274:43–51

  25. Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press, New York

  26. Serfling RJ (2002) Approximation theorems of mathematical statistics. Wiley, New York

  27. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford Series in Ecology and Evolution. Oxford University Press. Oxford

  28. Soubeyrand S, Laine A, Hanski I, Penttinen A (2009a) Spatio-temporal structure of host-pathogen interactions in a metapop- ulation. Am Nat 174:308–320

  29. Soubeyrand S, Neuvonen S, Penttinen A (2009b) Mechanical-statistical modelling in ecology: from outbreak detections to pest dynamics. Bull Math Biol 71:318–338

  30. Tong H (1990) Non-linear time series: a dynamical system approach. Oxford University Press, Oxford

  31. Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer, Sunderland

  32. Wikle CK (2003a) Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84:1382–1394

  33. Wikle CK (2003b) Hierarchical models in environmental science. Int Stat Rev 71:181–199

  34. Wikle CK, Berliner LM (2007) A Bayesian tutorial for data assimilation. Physica D 230:1–16

Download references

Author information

Correspondence to Lionel Roques.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (761 KB)

Electronic supplementary material

AVI (82 KB)

AVI (82 KB)

Electronic supplementary material

AVI (117 KB)

AVI (117 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soubeyrand, S., Roques, L. Parameter estimation for reaction-diffusion models of biological invasions. Popul Ecol 56, 427–434 (2014). https://doi.org/10.1007/s10144-013-0415-0

Download citation

Keywords

  • Inverse problem
  • Mechanistic-statistical model
  • Parametric estimation
  • Partial differential equation
  • Population spread
  • Statistical inference