Population Ecology

, Volume 55, Issue 1, pp 135–146 | Cite as

Effects of temperature and rainfall variation on population structure and sexual dimorphism across the geographical range of a dioecious species

  • Leonor Álvarez-Cansino
  • María Zunzunegui
  • Mari Cruz Díaz Barradas
  • Otilia Correia
  • Mari Paz Esquivias
Original article


The effects of climate (precipitation and temperature) on sexual dimorphism and population structure were analysed along a broad-scale environmental gradient covering the distributional range of the endemic dioecious species Corema album, along the west coast of the Iberian Peninsula. We aimed to assess distribution constraints and sex-related differences in demography and size associated with higher reproductive investment in females. Nine populations were chosen from across the geographic range of C. album and ten 10 × 10 m plots were established (10 m apart) along a 200-m transect. All male, female and non-reproductive shrubs were quantified within each plot and plant size, photosynthetic layer, height, sex ratio, population density and structure, and spatial segregation of sexes, under environmental conditions ranging from temperate to Mediterranean climate, were recorded and analysed. Increased aridity was related to lower population density and less structured populations, indicating an effect of higher temperature and lower precipitation on regeneration. Sexual dimorphism was influenced by climate, with size differences between sexes varying with aridity. However, demographic differences between sexes reflected in sex ratio deviations or the occurrence of spatial segregation were unrelated to any climatic variable, suggesting the existence of compensatory mechanisms that may counterbalance the higher reproductive effort of female plants. The results show the vulnerability of this endemic species to the increase in aridity expected in the southernmost limit of the biogeographical area due to global climate change, and demonstrate the importance of broad scale studies in the assessment of sexual dimorphism.


Corema album Dimorphism index Distribution Population density Sex ratio Size class 



This research was supported by a FPU Fellowship to Leonor Álvarez-Cansino (Ministerio de Educacion y Ciencia, Spain) and a Spanish-Portuguese Integrated Action (Ministerio de Ciencia y Tecnología, Spain).


  1. Álvarez-Cansino L (2009) Sexual dimorphism in the dioecious shrub Corema album at population and biogeographical scale. PhD dissertation, University of Seville, Spain (in Spanish with English abstract)Google Scholar
  2. Álvarez-Cansino L, Zunzunegui M, Díaz-Barradas MC, Esquivias MP (2010a) Physiological performance and xylem water isotopic composition underlie gender-specific responses in the dioecious shrub Corema album. Physiol Plantarum 140:32–45CrossRefGoogle Scholar
  3. Álvarez-Cansino L, Zunzunegui M, Díaz-Barradas MC, Esquivias MP (2010b) Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Ann Bot-London 106:989–998CrossRefGoogle Scholar
  4. Angert AL, Schemske DW (2005) The evolution of species’ distributions: reciprocal transplants across the elevation ranges of Mimulus cardinalis and M. lewisii. Evolution 59:1671–1684PubMedGoogle Scholar
  5. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecol Biogeogr 16:743–753CrossRefGoogle Scholar
  6. Bierzychudek P, Eckhart V (1988) Spatial segregation of the sexes of dioecious plants. Am Nat 132:34–43CrossRefGoogle Scholar
  7. Blanca G, Cabezudo B, Hernández-Bermejo JE, Herrera CM, Muñoz J, Valdés B (2003) Libro rojo de la flora silvestre amenazada de Andalucía. Junta de Andalucía, Spain (in Spanish)Google Scholar
  8. Bram MR, Quinn JA (2000) Sex expression, sex-specific traits, and the effects of salinity on growth and reproduction of Amaranthus cannabinus (Amaranthaceae), a dioecious annual. Am J Bot 87:1609–1618PubMedCrossRefGoogle Scholar
  9. Calviño-Cancela M (2005) Fruit consumers and seed dispersers of the rare shrub Corema album, Empetraceae in coastal sand dunes. Rev Eco Terre Vie 60:97–106Google Scholar
  10. Calviño-Cancela M (2007) Seed and microsite limitations of recruitment and the impacts of post-dispersal seed predation at the within population level. Plant Ecol 192:35–44CrossRefGoogle Scholar
  11. Case Al, Barrett SCH (2004) Environmental stress and the evolution of dioecy: Wumbea dioica (Colchicaceae) in Western Australia. Evol Ecol 18:145–164CrossRefGoogle Scholar
  12. Castro J, Zamora R, Hódar JA, Reyes JM (2004) Seedling establishment of a boreal tree species (Pinus sylverstris) at its southernmost distribution limit, consequences of being in a marginal Mediterranean area. J Ecol 92:266–277CrossRefGoogle Scholar
  13. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 848–940Google Scholar
  14. Cipollini ML, Whigham DF (1994) Sexual dimorphism and cost of reproduction in the dioecious shrub Lindera benzoin (Lauraceae). Am J Bot 81:65–75CrossRefGoogle Scholar
  15. Clavijo A, Díaz Barradas MC, Zunzunegui M, Ain Lhout F, Álvarez Cansino L, Correia O, García Novo F (2003) Conservaçao de Corema album no litoral atlântico da Península Ibérica; a influência de dispersores animais na regeneraçâo natural. Revista de Biologia 21:43–56 (in Portuguese with English abstract)Google Scholar
  16. Condit R, Sukumar R, Hubbell SP, Foster RB (1998) Predicting population trends from size distributions: a direct test in a tropical tree community. Am Nat 152:495–509PubMedCrossRefGoogle Scholar
  17. Correia O, Díaz Barradas MC (2000) Ecophysiological differences between male and female plants of Pistacia lentiscus L. Plant Ecol 149:131–142CrossRefGoogle Scholar
  18. Cox PA (1981) Niche partitioning between sexes of dioecious plants. Am Nat 177:295–307CrossRefGoogle Scholar
  19. Dawson TE, Bliss LC (1989) Patterns of water use and the tissue water relations in the dioecious shrub, Salix arctica: the physiological basis for habitat partitioning between the sexes. Oecologia 79:332–343CrossRefGoogle Scholar
  20. Dawson TE, Ehleringer JR (1993) Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo. Ecology 74:798–815CrossRefGoogle Scholar
  21. Dawson TE, Geber MA (1999) Dimorphism in physiology and morphology. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer-Verlag, Berlin, pp 175–215CrossRefGoogle Scholar
  22. Delph LF (1999) Sexual dimorphism in life history. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer-Verlag, Berlin, pp 149–173CrossRefGoogle Scholar
  23. Di Castri F (1981) Mediterranean-type shrublands of the world. In: Di Castri F, Goodall D, Specht R (eds) Ecosystems of the world Vol 11. Elsevier scientific, Amsterdam-Oxford-New York, pp 1–43Google Scholar
  24. Díaz Barradas MC, Zunzunegui M, Tirado R, Ain-Lhout F, García Novo F (1999) Plant functional types and ecosystem function in Mediterranean shrubland. J Veg Sci 10:709–716CrossRefGoogle Scholar
  25. Dudley LS, Galen C (2007) Stage-dependent patterns of drought tolerance and gas exchange vary between sexes in the alpine willow, Salix glauca. Oecologia 153:1–9PubMedCrossRefGoogle Scholar
  26. Engelbrecht BM, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbel SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82PubMedCrossRefGoogle Scholar
  27. Fedriani JM, Delibes M (2009) Functional diversity in fruit-frugivore interactions: a field experiment with Mediterranean mammals. Ecography 32:983–992CrossRefGoogle Scholar
  28. Freeman DC, Klikoff LG, Harper KT (1976) Differential resource utilization by the sexes of dioecious plants. Science 193:597–599PubMedCrossRefGoogle Scholar
  29. Gibson DJ, Menges ES (1994) Population structure and spatial pattern in the dioecious shrub Ceratiola ericoides. J Veg Sci 5:337–346CrossRefGoogle Scholar
  30. Gómez-Aparicio L, Zamora R, Gómez JM (2005) The regeneration status of the endangered Acer opalus subs granatense throughout its geographical distribution in the Iberian Peninsula. Biol Conserv 121:195–206CrossRefGoogle Scholar
  31. Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I, Matías L, Quero JL, Castro J, Zamora R, Marañón T (2008) Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos 117:1683–1699CrossRefGoogle Scholar
  32. Guitián P, Medrano M, Rodríguez M (1997) Reproductive biology of Corema album (L.) D. Don (Empetraceae) in the northwest Iberian Peninsula. Acta Bot Gallica 144:119–128Google Scholar
  33. Harrington GN (1991) Effects of soil moisture on shrub seedling survival in a semi-arid grassland. Ecology 72:1138–1149CrossRefGoogle Scholar
  34. Harris MS, Pannell JR (2008) Roots, shoots and reproduction: sexual dimorphism in size and costs of reproductive allocation in an annual herb. Proc R Soc B 275:2595–2602PubMedCrossRefGoogle Scholar
  35. Herrera CM (1988) Plant size, spacing patterns, and host-plant selection in Osyris quatripartita, a hemiparasitic dioecious shrub. J Ecol 76:995–1006CrossRefGoogle Scholar
  36. Horn H (ed) (1971) The adaptive geometry of trees. Princeton University Press, PrincetonGoogle Scholar
  37. Hultine KR, Bush SE, West AG, Ehleringer JR (2007) Population structure, physiology and ecohydrological impacts of dioecious riparian tree species of western North America. Oecologia 154:85–93PubMedCrossRefGoogle Scholar
  38. Llorens L, Peñuelas J, Beier C, Emmett B, Estiarte M, Tietema A (2004) Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient. Ecosystems 7:613–624CrossRefGoogle Scholar
  39. Lloret F, Peñuelas J, Prieto P, Llorens L, Estiarte M (2009) Plant community changes induced by experimental climate change: seedling and adult species composition. Perspect Plant Ecol 11:53–63CrossRefGoogle Scholar
  40. Lloyd DG, Webb CJ (1977) Secondary sex characters in plants. Bot Rev 43:177–216CrossRefGoogle Scholar
  41. Martínez Cortizas A, Castillo Rodríguez F, Valcárcel Díaz M, Pérez Alberti A, Blanco Chao R, Fernández F, Andrade Ledo C, Lombardero MJ, Rodríguez Fernández RJ, García González I, Rodríguez Lado L (2000) Atlas climático de Galicia. Xunta de Galicia (eds), Santiago de Compostela (in Spanish)Google Scholar
  42. Nicotra AB (1998) Sex ratio variation and spatial distribution of Siparuna grandiflora, a tropical dioecious shrub. Oecologia 115:102–113CrossRefGoogle Scholar
  43. Nicotra AB (1999) Sexually dimorphic growth in the dioecious tropical shrub Siparuna grandiflora. Funct Ecol 13:322–331CrossRefGoogle Scholar
  44. Nuñez CI, Nuñez MA, Kitzberger T (2008) Sex-related spatial segregation and growth in a dioecious conifer along environmental gradients in northwestern Patagonia. Ecoscience 15:73–80CrossRefGoogle Scholar
  45. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348CrossRefGoogle Scholar
  46. Obeso JR, Álvarez-Santullano M, Retuerto R (1998) Sex ratios, size distributions, and sexual dimorphism in the dioecious tree Ilex aquifolium (Aquifoliaceae). Am J Bot 85:1602–1608PubMedCrossRefGoogle Scholar
  47. Ortiz P, Arista M, Talavera S (2002) Sex ratio and reproductive effort in the dioecious Juniperus communis subsp. alpina (Suter) Celak (Cupressaceae) along an altitudinal gradient. Ann Bot 89:205–211PubMedCrossRefGoogle Scholar
  48. Pielou EC (1960) A single mechanism to account for regular, random and aggregated populations. J Ecol 48:575–584CrossRefGoogle Scholar
  49. Ranwell DS (ed) (1972) Ecology of salt marshes and sand dunes. Chapman and Hall, LondonGoogle Scholar
  50. Rivas-Martínez S (1987) Nociones sobre fitosociología, biogeografía y bioclimatología. In: Peinado Lorca Y, Rivas-Martínez S (eds) La vegetación de España. Servicio de publicaciones de la Universidad de Alcalá de Henares, Alcalá de Hernares, pp 17–45 (in Spanish)Google Scholar
  51. Rocheleau AF, Houle G (2001) Different cost of reproduction for the males and females of the rare dioecious shrub Corema conradii (Empetraceae). Am J Bot 88:659–666PubMedCrossRefGoogle Scholar
  52. Sánchez-Vilas J, Pannell JR (2011) Sexual dimorphism in resource acquisition and deployment: both size and timing matter. Ann Bot-London 107:119–126CrossRefGoogle Scholar
  53. Sanz R, Pulido F, Nogués-Bravo D (2009) Predicting mechanisms across scales: amplified effects of abiotic constraints on the recruitment of yew Taxus baccata. Ecography 32:993–1000CrossRefGoogle Scholar
  54. Schmidt JP (2008) Sex ratio and spatial pattern of males and females in the dioecious sandhill shrub, Ceratiola ericoides (Empetraceae) Michx. Plant Ecol 196:281–288CrossRefGoogle Scholar
  55. Shea MM, Dixon PM, Sharitz RR (1993) Size differences, sex ratio and spatial distribution of male and female water tupelo, Nyssa aquatica (Nissaceae). Am J Bot 80:26–30CrossRefGoogle Scholar
  56. Shine R (1989) Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Q Rev Biol 64:419–461PubMedCrossRefGoogle Scholar
  57. Smith R (1999) Statistics of sexual size dimorphism. J Hum Evol 36:423–459PubMedCrossRefGoogle Scholar
  58. Sokal RR, Rohlf FJ (eds) (1981) Biometry. Freeman and Company, New YorkGoogle Scholar
  59. Tormo Molina R, Ruíz Téllez T, Devesa Alvaráz J (1992) Aportación a la bioclimatología de Portugal. Anales del Jardín Botánico de Madrid 49:245–264 (in Spanish)Google Scholar
  60. Valdés B, Talavera S, Fernández Galiano E (1987) Flora vascular de Andalucía occidental. Ketres, Barcelona (in Spanish)Google Scholar
  61. Verdú M, García-Fayos P (1998) Female biased sex ratios in Pistacia lentiscus L. (Anacardiaceae). Plant Ecol 135:95–101CrossRefGoogle Scholar
  62. Verdú M, Spanos K, Canova I, Slobondik B, Paule L (2007) Similar gender dimorphism in the costs of reproduction across the geographic range of Fraxinus ornus. Ann Bot 99:183–191PubMedCrossRefGoogle Scholar
  63. Xu X, Peng G, Wu C, Korpelainen H, Li C (2008) Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana. Tree Physiol 28:1751–1759PubMedCrossRefGoogle Scholar
  64. Zimmerman JK, Lechowicz MJ (1982) Responses to moisture stress in male and female plants of Rumex acetosella L. (Polygonaceae). Oecologia 53:305–309CrossRefGoogle Scholar
  65. Zunzunegui M, Díaz Barradas MC, Clavijo A, Álvarez-Cansino L, Ain Lhout F, García Novo F (2006) Ecophysiology, growth timing and reproductive effort of three sexual forms of Corema album. Plant Ecol 183:35–46CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2012

Authors and Affiliations

  • Leonor Álvarez-Cansino
    • 1
    • 2
  • María Zunzunegui
    • 3
  • Mari Cruz Díaz Barradas
    • 3
  • Otilia Correia
    • 4
  • Mari Paz Esquivias
    • 3
  1. 1.Department of Biological SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Smithsonian Tropical Research InstituteBalboaPanama
  3. 3.Department of Plant Biology and Ecology, Facultad de BiologíaUniversity of SevilleSevilleSpain
  4. 4.Departamento de Biologia Vegetal, CBA-Faculdade CiênciasUniversity of LisbonLisbonPortugal

Personalised recommendations