Advertisement

Population Ecology

, Volume 51, Issue 2, pp 237–243 | Cite as

Herbivory-induced extrafloral nectar increases native and invasive ant worker survival

  • Lori Lach
  • Richard J. Hobbs
  • Jonathan D. Majer
Original Article

Abstract

Ascertaining the costs and benefits of mutualistic interactions is important for predicting their stability and effect on community dynamics. Despite widespread designation of the interaction between ants and extrafloral nectaries (EFNs) as a mutualism and over 100 years of studies on ant benefits to plants, the benefits to ants have never been experimentally quantified. The success of invasive ants is thought to be linked to the availability of carbohydrate-rich resources, though reports of invasive ant visits to EFNs are mixed. In two laboratory experiments, we compared worker survival of one native (Iridomyrmex chasei) and two invasive ant species (Linepithema humile and Pheidole megacephala) exposed to herbivorized or non-herbivorized EFN-bearing plants (Acacia saligna) or positive and negative controls. We found that non-herbivorized plants did not produce any measurable extrafloral nectar, and ants with access to non-herbivorized plants had the same survival as ants with access to an artificial plant and water (unfed ants). Ants given herbivorized plants had 7–11 times greater worker survival relative to unfed ants, but there were no differences in survival between native and invasive ants exposed to herbivorized plants. Our results reveal that ants cannot induce A. saligna extrafloral nectar production, but workers of both native and invasive ant species can benefit from extrafloral nectar as much as they benefit from sucrose.

Keywords

Acacia saligna Ant–plant interaction Iridomyrmex chasei Linepithema humile Mutualism Pheidole megacephala 

Notes

Acknowledgments

We thank M. Heil and J. Ness for comments on earlier drafts of the manuscript and M. Richter, P. Grimwade, K.-B. Tan, K. Rehm, and K. Wurm for logistical assistance. This study was funded by the Australian Research Council.

References

  1. Agrawal AA, Rutter MT (1998) Dynamic anti-herbivore defense in ant–plants: the role of induced responses. Oikos 83:227–236. doi: 10.2307/3546834 CrossRefGoogle Scholar
  2. Blüthgen N, Fiedler K (2004) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166. doi: 10.1111/j.1365-2656.2004.00789.x CrossRefGoogle Scholar
  3. Blüthgen N, Gottsberger G, Fiedler K (2004) Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian rainforest. Austral Ecol 29:418–429. doi: 10.1111/j.1442-9993.2004.01380.x CrossRefGoogle Scholar
  4. Boevé J-L, Wäckers FL (2003) Gustatory perception and metabolic utilization of sugars by Myrmica rubra ant workers. Oecologia 136:508–514. doi: 10.1007/s00442-003-1249-9 PubMedCrossRefGoogle Scholar
  5. Bronstein JL (1998) The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica 30:150–161. doi: 10.1111/j.1744-7429.1998.tb00050.x CrossRefGoogle Scholar
  6. Chen L, Fadamiro HY (2006) Comparing the effects of five naturally occurring monosaccharide and oligosaccharide sugars on longevity and carbohydrate nutrient levels of a parasitic phorid fly, Pseudacteon tricuspis. Physiol Entomol 31:46–56. doi: 10.1111/j.1365-3032.2005.00484.x CrossRefGoogle Scholar
  7. Cushman JH, Rashbrook VK, Beattie AJ (1994) Assessing benefits to both participants in a Lycaenid-ant association. Ecology 75:1031–1041. doi: 10.2307/1939427 CrossRefGoogle Scholar
  8. Davidson DW (1998) Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecol Entomol 23:484–490. doi: 10.1046/j.1365-2311.1998.00145.x CrossRefGoogle Scholar
  9. Davidson DW, Cook SC, Snelling RR (2004) Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:255–266. doi: 10.1007/s00442-004-1508-4 PubMedCrossRefGoogle Scholar
  10. Dejean A, Le Breton J, Suzzoni JP, Orivel J, Saux-Moreau C (2005) Influence of interspecific competition on the recruitment behavior and liquid food transport in the tramp ant species Pheidole megacephala. Naturwissenschaften 92:324–327. doi: 10.1007/s00114-005-0632-2 PubMedCrossRefGoogle Scholar
  11. Dytham C (2000) Choosing and using statistics: a biologist’s guide. Blackwell, OxfordGoogle Scholar
  12. Fokuhl G, Heinze J, Poschlod P (2007) Colony growth in Myrmica rubra with supplementation of myrmecochorous seeds. Ecol Res 22:845–847. doi: 10.1007/s11284-006-0331-2 CrossRefGoogle Scholar
  13. Gammans N, Bullock JM, Schonrogge K (2005) Ant benefits in a seed dispersal mutualism. Oecologia 146:43–49. doi: 10.1007/s00442-005-0154-9 PubMedCrossRefGoogle Scholar
  14. Grover CD, Kay AD, Monson JA, Marsh TC, Holway DA (2007) Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proc R Soc Lond B Biol Sci 274:2951–2957. doi: 10.1098/rspb.2007.1065 CrossRefGoogle Scholar
  15. Heil M, McKey D (2003) Protective ant–plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453. doi: 10.1146/annurev.ecolsys.34.011802.132410 CrossRefGoogle Scholar
  16. Heil M, Fiala B, Baumann B, Linsenmair KE (2000) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol 14:749–757. doi: 10.1046/j.1365-2435.2000.00480.x CrossRefGoogle Scholar
  17. Heil M, Greiner S, Meimberg H, Kruger R, Noyer J-L, Heubl G, Linsenmair KE, Boland W (2004) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–208. doi: 10.1038/nature02703 PubMedCrossRefGoogle Scholar
  18. Helms KR, Vinson SB (2002) Widespread association of the invasive ant Solenopsis invicta with an invasive mealybug. Ecology 83:2425–2438CrossRefGoogle Scholar
  19. Hoffmann BD, Andersen AN, Hill GJE (1999) Impact of an introduced ant on native rain forest invertebrates: Pheidole megacephala in monsoonal Australia. Oecologia 120:595–604Google Scholar
  20. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233. doi: 10.1146/annurev.ecolsys.33.010802.150444 CrossRefGoogle Scholar
  21. Koptur S (1992) Extrafloral nectary mediated interactions between insects and plants. In: Bernays E (ed) Insect–plant interactions. CRC Press, Boca Raton, pp 81–129Google Scholar
  22. Koptur S, Truong N (1998) Facultative ant–plant interactions: nectar sugar preferences of introduced pest ant species in South Florida. Biotropica 30:179–189. doi: 10.1111/j.1744-7429.1998.tb00053.x CrossRefGoogle Scholar
  23. Krushelnycky PD, Holway DA, LeBrun EG (2009) Invasion processes and causes of success. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford (in press)Google Scholar
  24. Lach L (2008) Argentine ants displace floral arthropods in a biodiversity hotspot. Divers Distrib 14:281–290CrossRefGoogle Scholar
  25. Lach L, Hooper-Bùi LM (2009) Consequences of ant invasions. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford (in press)Google Scholar
  26. Morales MA, Heithaus ER (1998) Food from seed-dispersal mutualism shifts sex ratios in colonies of the ant Aphaenogaster rudis. Ecology 79:734–739Google Scholar
  27. Ness JH (2003) Contrasting exotic Solenopsis invicta and native Forelius pruinosus ants as mutualists with Catalpa bignonioides, a native plant. Ecol Entomol 28:247–251. doi: 10.1046/j.1365-2311.2003.00500.x CrossRefGoogle Scholar
  28. Ness JH, Morris WF, Bronstein JL (2006) Integrating quality and quantity of mutualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology 87:912–921. doi: 10.1890/0012-9658(2006)87[912:IQAQOM]2.0.CO;2 PubMedCrossRefGoogle Scholar
  29. O’Dowd DJ, Green PT, Lake PS (2003) Invasional ‘meltdown’ on an oceanic island. Ecol Lett 6:812–817. doi: 10.1046/j.1461-0248.2003.00512.x CrossRefGoogle Scholar
  30. Oliver TH, Cook JM, Leather SR (2007) When are ant-attractant devices a worthwhile investment? Vicia faba extrafloral nectaries and Lasius niger ants. Popul Ecol 49:265–273. doi: 10.1007/s10144-007-0044-6 CrossRefGoogle Scholar
  31. Onagbola EO, Fadamiro HY, Mbata GN (2007) Longevity, fecundity, and progeny sex ratio of Pteromalus cerealellae in relation to diet, host provision, and mating. Biol Control 40:222–229. doi: 10.1016/j.biocontrol.2006.10.010 CrossRefGoogle Scholar
  32. Passera L (1994) Characteristics of tramp species. In: Williams DF (ed) Exotic ants: biology, impact and control of introduced species. Westview Press, Boulder, pp 23–43Google Scholar
  33. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions: the role of mutualisms. Biol Rev Camb Philos Soc 75:65–93. doi: 10.1017/S0006323199005435 PubMedCrossRefGoogle Scholar
  34. Rico-Gray V, García-Franco JG (1998) Geographical and seasonal variation in the richness of ant–plant interactions in México. Biotropica 30:190–200. doi: 10.1111/j.1744-7429.1998.tb00054.x CrossRefGoogle Scholar
  35. Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592. doi: 10.1016/j.tree.2006.06.018 PubMedCrossRefGoogle Scholar
  36. Schemske DW (1982) Ecological correlates of a neotropical mutualism: ant assemblages at Costus extrafloral nectaries. Ecology 63:932–941. doi: 10.2307/1937233 CrossRefGoogle Scholar
  37. Schilman P, Roces F (2008) Haemolymph sugar levels in a nectar-feeding ant: dependence on metabolic expenditure and carbohydrate deprivation. J Comp Physiol [B] 178:157–165. doi: 10.1007/s00360-007-0207-y Google Scholar
  38. Shattuck SO (1999) Australian ants: their biology and identification. CSIRO, CollingwoodGoogle Scholar
  39. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919. doi: 10.1111/j.1461-0248.2006.00939.x PubMedCrossRefGoogle Scholar
  40. Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246. doi: 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2 CrossRefGoogle Scholar
  41. Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100. doi: 10.1073/pnas.98.3.1095 PubMedCrossRefGoogle Scholar
  42. Wheeler DE (1994) Ants as primary consumers: diet and abundance in the Formicidae. In: Hunt JH, Nelepa CA (eds) Nourishment in ants: patterns in individuals and societies. Westview Press, Boulder, pp 245–278Google Scholar
  43. Wilson EO, Taylor RW (1967) The ants of Polynesia. Pac Insects Monogr 14:1–109Google Scholar

Copyright information

© The Society of Population Ecology and Springer 2009

Authors and Affiliations

  • Lori Lach
    • 1
  • Richard J. Hobbs
    • 1
  • Jonathan D. Majer
    • 2
  1. 1.School of Environmental ScienceMurdoch UniversityMurdochAustralia
  2. 2.Department of Environmental BiologyCurtin University of TechnologyBentleyAustralia

Personalised recommendations