Population Ecology

, Volume 51, Issue 2, pp 307–315 | Cite as

Spatial genetic structure and restricted gene flow in a functionally dioecious fig, Ficus pumila L. var. pumila (Moraceae)

  • Rong Wang
  • Bin Ai
  • Bang-Quan Gao
  • Shuo Yu
  • Yuan-Yuan Li
  • Xiao-Yong Chen
Original Article

Abstract

The mutualism between fig plants and fig wasps has been recognized as one of the most specialized systems of symbiosis. Figs are pollinated by their highly specific pollinating fig wasps, and the pollinating fig wasps are raised within the syconia of figs. Recent studies indicated a difference between monoecious and dioecious figs in the dispersal range of pollinating wasps, which has potential consequences for gene flow. In this study, we detected the gene-flow pattern of the dioecious climbing fig, Ficus pumila L. var. pumila, at both local and regional scales. At the local scale, spatial autocorrelation analysis indicated strong genetic structure at short distances, a pattern of limited gene flow. This result was also supported by a high inbreeding coefficient (FIS = 0.287) and significant substructuring (FST = 0.060; P < 0.001). Further analysis indicated that the effective gene dispersal range was 1,211 m, and the relative contribution of seed dispersal was smaller than that of pollen dispersal. The inferred effective range of pollen dispersal ranged from 989 to 1,712 m, while the effective seed dispersal range was less than 989 m. Lack of long-distance dispersal agents may explain the limited seed dispersal. The high density of receptive fig trees was the most likely explanation for limited pollen dispersal, and the position of syconia and relatively low wind speed beneath the canopy may contribute to this phenomenon. At the regional scale, significant negative correlations (kinship coefficient Fij ranging from −0.038 to −0.071) existed in all comparisons between the studied population and other populations, and the assignment test grouped almost all individuals of the studied population into a distinct cluster. Asynchronous flowering on the regional scale, which provides a barrier for the pollinating wasps to fly from the studied population to the other populations, is probably responsible for the limited gene flow on the regional scale.

Keywords

Assignment test Ficus pumila L. var. pumila Microsatellites Pollen and seed dispersal Spatial genetic structure 

References

  1. Barret SCH, Eckert CG (1990) Variation and evolution of mating systems in seed plants. In: Kawano S (ed) Biological approaches and evolutionary trends in plants. Academic, London, pp 229–254Google Scholar
  2. Chen Y, Li HQ, Ma WL (2002) The reproductive character of Ficus pumila var. pumila, F. pumila var. awkeotsang and their pollinators (in Chinese with English abstract). Acta Phytoecol Sinica 26:58–63Google Scholar
  3. Chen Y, Li HQ, Ruan SJ, Ma WL (2008a) Pollination of a cultivated fig, Ficus pumila var. awkeotsang, in South China. Symbiosis 45:33–36Google Scholar
  4. Chen Y, Shi MM, Ai B, Gu JM, Chen XY (2008b) Genetic variation in island and mainland population of Ficus pumila (Moraceae) in eastern Zhejiang of China. Symbiosis 45:37–44Google Scholar
  5. Compton SG, Craig AJFK, Waters IWR (1996) Seed dispersal in an African fig tree: birds as high quantity, low quality dispersers? J Biogeogr 23:553–563. doi:10.1111/j.1365-2699.1996.tb00017.x CrossRefGoogle Scholar
  6. Compton SG, Ellwood MDF, Davis AJ, Welch K (2000) The flight heights of chalcid wasps (Hymenoptera, Chalcidoidea) in a lowland Bornean rain forest: fig wasps are the high fliers. Biotropica 32:515–522Google Scholar
  7. Cook JM, Rasplus JY (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248. doi:10.1016/S0169-5347(03)00062-4 CrossRefGoogle Scholar
  8. Corlett RT (2006) Figs (Ficus, Moraceae) in urban Hong Kong, South China. Biotropica 38:116–121Google Scholar
  9. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. doi:10.1007/BF00221895 CrossRefGoogle Scholar
  10. Epperson BK (1990) Spatial autocorrelation of genotypes under directional selection. Genetics 124:757–771PubMedGoogle Scholar
  11. Epperson BK (2004) Multilocus estimation of genetic structure within populations. Theor Popul Biol 65:227–237. doi:10.1016/j.tpb.2003.11.003 PubMedCrossRefGoogle Scholar
  12. Epperson BK (2007) Plant dispersal, neighbourhood size and isolation by distance. Mol Ecol 16:3854–3865. doi:10.1111/j.1365-294X.2007.03434.x PubMedCrossRefGoogle Scholar
  13. Epperson BK, Li TQ (1996) Measurement of genetic structure within populations using Moran’s spatial autocorrelation statistics. Proc Natl Acad Sci USA 93:10528–10532. doi:10.1073/pnas.93.19.10528 PubMedCrossRefGoogle Scholar
  14. Epperson BK, Huang Z, Li TQ (1999) Measures of spatial structure in samples of genotypes for multiallelic loci. Genet Res 73:251–261. doi:10.1017/S001667239900378X PubMedCrossRefGoogle Scholar
  15. Escudero A, Iriondo JM, Torres ME (2003) Spatial analysis of genetic diversity as a tool for plant conservation. Biol Conserv 113:351–365. doi:10.1016/S0006-3207(03)00122-8 CrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  17. Fan XX, Shen L, Zhang X, Chen XY, Fu CX (2004) Assessing genetic diversity of Ginkgo biloba L. (Ginkgoaceae) populations from China by RAPD markers. Biochem Genet 42:269–278. doi:10.1023/B:BIGI.0000034431.15308.57 PubMedCrossRefGoogle Scholar
  18. Fenster CB, Vekemans X, Hardy OJ (2003) Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculate (Leguminosae). Evolution 57:995–1007Google Scholar
  19. Giraldo E, Viruel MA, Lopez-Corrales M, Hormaza JI (2005) Characterisation and cross-species transferability of microsatellites in the common fig (Ficus carica L.). J Hortic Sci Biotechnol 80:217–224Google Scholar
  20. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  21. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63Google Scholar
  22. Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83:145–154. doi:10.1046/j.1365-2540.1999.00558.x PubMedCrossRefGoogle Scholar
  23. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x CrossRefGoogle Scholar
  24. Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Halle C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Mol Ecol 15:559–571. doi:10.1111/j.1365-294X.2005.02785.x PubMedCrossRefGoogle Scholar
  25. Harrison RD (1996) The ecology of the fig–fig wasp mutualism in a lowland tropical forest in Sarawak, Malaysia. M.Sc. Thesis, Kyoto University, Kyoto, JapanGoogle Scholar
  26. Harrison RD (2000) Repercussions of El Nino: drought causes extinction and the breakdown of mutualism in Borneo. Proc R Soc Lond B Biol Sci 267:911–915. doi:10.1098/rspb.2000.1089 CrossRefGoogle Scholar
  27. Harrison RD (2003) Fig wasp dispersal and the stability of a keystone plant resource in Borneo. Proc R Soc Lond B Biol Sci 270:S76–S79. doi:10.1098/rsbl.2003.0018 CrossRefGoogle Scholar
  28. Harrison RD (2008) Adaptive significance of phenological variation among monoecious hemi-epiphytic figs in Borneo. Symbiosis 45:83–90Google Scholar
  29. Harrison RD, Yamamura N, Inoue T (2000) Phenology of a common roadside fig in Sarawak. Ecol Res 15:47–61. doi:10.1046/j.1440-1703.2000.00319.x CrossRefGoogle Scholar
  30. Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53. doi:10.1016/S0169-5347(98)01529-8 PubMedCrossRefGoogle Scholar
  31. Heuertz M, Vekemans X, Hausman JF, Palada M, Hardy OJ (2003) Estimating seed versus pollen dispersal from spatial genetic structure in the common ash. Mol Ecol 12:2483–2495. doi:10.1046/j.1365-294X.2003.01923.x PubMedCrossRefGoogle Scholar
  32. Janzen DH (1979) How to be a fig. Annu Rev Ecol Syst 10:13–51. doi:10.1146/annurev.es.10.110179.000305 CrossRefGoogle Scholar
  33. Kameyama T, Harrison R, Yamamura N (1999) Persistence of a fig wasp population and evolution of dioecy in figs: a simulation study. Res Popul Ecol (Kyoto) 41:243–252Google Scholar
  34. Kjellberg F, Doumesche B, Bronstein JL (1988) Longevity of a fig wasp (Blastophaga psenes). Proc K Ned Akad Wet C 91:117–122Google Scholar
  35. Lambert FR, Marshall AG (1991) Keystone characteristics of bird-dispersed Ficus in a Malaysian lowland rain forest. J Ecol 79:793–809. doi:10.2307/2260668 CrossRefGoogle Scholar
  36. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425. doi:10.2307/2445869 CrossRefGoogle Scholar
  37. Ma WL, Wu X (1989) A preliminary study of symbioses between Blastophaga pumilae Hill (Hymenoptera) and Ficus pumila L. (Moraceae) (in Chinese with English abstract). Acta Ecol Sin 9:9–14Google Scholar
  38. Machado CA, Jousselin E, Kjellberg F, Compton SG, Herre EA (2001) Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc R Soc Lond B Biol Sci 268:685–694. doi:10.1098/rspb.2000.1418 CrossRefGoogle Scholar
  39. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. doi:10.1016/S0169-5347(03)00008-9 CrossRefGoogle Scholar
  40. Miller MP (1997) Tools for population genetic analyses (TFPGA) v1.3: a windows program for the analysis of allozyme and molecular genetic data. Department of Biological Sciences, Northern Arizona University, FlagstaffGoogle Scholar
  41. Nason JD, Herre EA, Hamrick JL (1998) The breeding structure of a tropical keystone plant resource. Nature 391:685–687. doi:10.1038/35607 CrossRefGoogle Scholar
  42. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  43. Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195PubMedGoogle Scholar
  44. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701. doi:10.1111/j.1365-294X.2004.02410.x PubMedCrossRefGoogle Scholar
  45. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  46. Saddoud O, Chatti K, Salhi-Hannachi A, Mars M, Rhouma A, Marrakchi M, Trifi M (2007) Genetic diversity of Tunisian figs (Ficus carica L.) as revealed by nuclear microsatellites. Hereditas 144:149–157. doi:10.1111/j.2007.0018-0661.01967.x PubMedCrossRefGoogle Scholar
  47. Shanahan M, Harrison RD, Yamuna R, Boen W, Thornton IWB (2001a) Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. V. Colonization by figs (Ficus spp.), their dispersers and pollinators. J Biogeogr 28:1365–1377. doi:10.1046/j.1365-2699.2001.00638.x CrossRefGoogle Scholar
  48. Shanahan M, So S, Compton SG, Corlett R (2001b) Fig-eating by vertebrate frugivores: a global review. Biol Rev Camb Philos Soc 76:529–572PubMedGoogle Scholar
  49. Shilton LA, Altringham JD, Compton SG, Whittaker RJ (1999) Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proc R Soc Lond B Biol Sci 266:219–223. doi:10.1098/rspb.1999.0625 CrossRefGoogle Scholar
  50. Sokal RR, Oden NL (1978) Spatial autocorrelation in biology. I. Methodology. Biol J Linn Soc Lond 10:199–228. doi:10.1111/j.1095-8312.1978.tb00013.x CrossRefGoogle Scholar
  51. Sokal RR, Jacquez GM, Wooten MC (1989) Spatial autocorrelation analysis of migration and selection. Genetics 121:845–855PubMedGoogle Scholar
  52. Sokal RR, Oden NL, Thomson BA (1997) A simulation study of microevolutionary inferences by spatial autocorrelation analysis. Biol J Linn Soc Lond 60:73–93. doi:10.1111/j.1095-8312.1997.tb01484.x CrossRefGoogle Scholar
  53. Song YC, Wang XR (1995) Vegetation and flora of Tiantong National Forest Park, Zhejiang Province (in Chinese with English abstract). Shanghai Scientific Documentary Press, ShanghaiGoogle Scholar
  54. Tan KH, Zubaid A, Kunz TH (1998) Food habits of Cynopterus brachyotis (Muller) (Chiroptera: Pteropodidau) in Peninsular Malaysia. J Trop Ecol 14:299–307. doi:10.1017/S0266467498000236 CrossRefGoogle Scholar
  55. Thornton LWB, Compton SG, Wilson CN (1996) The role of animal in the colonization of the Krakatau Islands by fig tress (Ficus species). J Biogeogr 23:577–592. doi:10.1111/j.1365-2699.1996.tb00019.x CrossRefGoogle Scholar
  56. Valbuena-Carabana M, Gonzalez-Martinez SC, Hardy OJ, Gil L (2007) Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Mol Ecol 16:1207–1219. doi:10.1111/j.1365-294X.2007.03231.x PubMedCrossRefGoogle Scholar
  57. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935. doi:10.1046/j.1365-294X.2004.02076.x PubMedCrossRefGoogle Scholar
  58. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641 CrossRefGoogle Scholar
  59. Yokoyama J (2003) Cospeciation of figs and fig-wasps: a case study of endemic species pairs in the Ogasawara Islands. Popul Ecol 45:249–256. doi:10.1007/s10144-003-0166-4 CrossRefGoogle Scholar
  60. Zavodna M, Arens P, Van Dijk PJ, Partomihardjo T, Vosman B, Van Damme JMM (2005a) Pollinating fig wasps: genetic consequences of island recolonization. J Evol Biol 18:1234–1243. doi:10.1111/j.1420-9101.2005.00937.x PubMedCrossRefGoogle Scholar
  61. Zavodna M, Arens P, Van Dijk PJ, Vosman B (2005b) Development and characterization of microsatellite markers for two dioecious Ficus species. Mol Ecol Notes 5:355–357. doi:10.1111/j.1471-8286.2005.00924.x CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2008

Authors and Affiliations

  • Rong Wang
    • 1
    • 2
  • Bin Ai
    • 1
    • 2
  • Bang-Quan Gao
    • 1
    • 2
  • Shuo Yu
    • 1
    • 2
  • Yuan-Yuan Li
    • 1
    • 2
  • Xiao-Yong Chen
    • 1
    • 2
  1. 1.Department of Environmental Sciences, Shanghai Key Laboratory for Ecological Processes and RestorationEast China Normal UniversityShanghaiChina
  2. 2.Tiantong National Observation Station for Forest EcosystemsShanghaiChina

Personalised recommendations