Population Ecology

, Volume 51, Issue 1, pp 17–32 | Cite as

Complexity and simplification in understanding recruitment in benthic populations

  • Jesús PinedaEmail author
  • Nathalie B. Reyns
  • Victoria R. Starczak
Special Feature: Review Spatial Connectivity and Scaling


Research of complex systems and problems, entities with many dependencies, is often reductionist. The reductionist approach splits systems or problems into different components, and then addresses these components one by one. This approach has been used in the study of recruitment and population dynamics of marine benthic (bottom-dwelling) species. Another approach examines benthic population dynamics by looking at a small set of processes. This approach is statistical or model-oriented. Simplified approaches identify “macroecological” patterns or attempt to identify and model the essential, “first-order” elements of the system. The complexity of the recruitment and population dynamics problems stems from the number of processes that can potentially influence benthic populations, including (1) larval pool dynamics, (2) larval transport, (3) settlement, and (4) post-settlement biotic and abiotic processes, and larval production. Moreover, these processes are non-linear, some interact, and they may operate on disparate scales. This contribution discusses reductionist and simplified approaches to study benthic recruitment and population dynamics of bottom-dwelling marine invertebrates. We first address complexity in two processes known to influence recruitment, larval transport, and post-settlement survival to reproduction, and discuss the difficulty in understanding recruitment by looking at relevant processes individually and in isolation. We then address the simplified approach, which reduces the number of processes and makes the problem manageable. We discuss how simplifications and “broad-brush first-order approaches” may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often results in mistaken inferences, and processes and parameters used in some models can bias our view of processes influencing recruitment. We conclude with a discussion on how to reconcile complex and simplified approaches. Although it appears impossible to achieve a full mechanistic understanding of recruitment by studying all components of the problem in isolation, we suggest that knowledge of these components is essential for simplifying and understanding the system beyond probabilistic description and modeling.


Larval dispersal Larval transport Models Population dynamics Reductionism Sampling interval 



J.P. and V.S. thoughts on this topic emerged when the authors were funded by the NSF Biocomplexity program. We also wish to thank WHOI’s Ocean Life Institute, and King Abdullah University of Science and Technology (KAUST) for support, and Jonathan Blythe for comments on the paper. The authors are solely responsible for the contents of this work.


  1. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GF (2007) Local replenishment of coral reef fish populations in a Marine Reserve. Science 316:742–744. doi: 10.1126/science.1140597 PubMedGoogle Scholar
  2. Becker BJ, Levin LA, Fodrie FJ, McMillan PA (2007) Complex larval connectivity patterns among marine invertebrate populations. Proc Natl Acad Sci USA 104:3267–3272. doi: 10.1073/pnas.0611651104 PubMedGoogle Scholar
  3. Benfield MC, Davis CS, Gallager SM (2000) Estimating the in-situ orientation of Calanus finmarchicus on Georges Bank using the Video Plankton Recorder. Plankton Biol Ecol 47:69–72Google Scholar
  4. Bertness MD (1989) Intraspecific competition and facilitation in a northern acorn barnacle population. Ecology 70:257–268. doi: 10.2307/1938431 Google Scholar
  5. Bertness MD, Gaines SD, Bermudez D, Sanford E (1991) Extreme spatial variation in the growth and reproductive output of the acorn barnacle Semibalanus balanoides. Mar Ecol Prog Ser 75:91–100. doi: 10.3354/meps075091 Google Scholar
  6. Bertness MD, Gaines SD, Stephens EG, Yund PO (1992) Components of recruitment in populations of the acorn barnacle Semibalanus balanoides (Linnaeus). J Exp Mar Biol Ecol 156:199–215. doi: 10.1016/0022-0981(92)90246-7 Google Scholar
  7. Bertness MD, Leonard GH, Levine JM, Bruno JF (1999) Climate-driven interactions among rocky intertidal organisms caught between a rock and a hot place. Oecologia 120:446–450. doi: 10.1007/s004420050877 Google Scholar
  8. Booth DJ (1991) The effect of sampling frequency on estimates of recruitment of the domino damselfish Dascyllus albisella Gill. J Exp Mar Biol Ecol 145:149–159. doi: 10.1016/0022-0981(91)90172-S Google Scholar
  9. Brink KH (1982) A comparison of long coastal trapped wave theory with observations off Peru. J Phys Oceanogr 12:897–913. doi :10.1175/1520-0485(1982)012<0897:ACOLCT>2.0.CO;2Google Scholar
  10. Broitman BR, Blanchette CA, Menge BA, Lubchenco J, Krenz C, Foley M, Raimondi PT, Lohse D, Gaines SD (2008) Spatial and temporal patterns of invertebrate recruitment along the west coast of the United States. Ecol Monogr 78:403–421. doi: 10.1890/06-1805.1 Google Scholar
  11. Bulleri F (2005) Experimental evaluation of early patterns of colonisation of space on rocky shores and seawalls. Mar Environ Res 60:355–374. doi: 10.1016/j.marenvres.2004.12.002 PubMedGoogle Scholar
  12. Cairns JL (1967) Asymmetry of internal tidal waves in shallow coastal waters. J Geophys Res 72:3563–3565. doi: 10.1029/JZ072i014p03563 Google Scholar
  13. Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500. doi: 10.1146/annurev.ecolsys.27.1.477 Google Scholar
  14. Caswell H (2001) Matrix population models. Sinauer Associates, SunderlandGoogle Scholar
  15. Chatfield C (1989) The analysis of time series. Chapman & Hall, New YorkGoogle Scholar
  16. Chia FS, Buckland-Nicks J, Young CM (1984) Locomotion of marine invertebrate larvae: a review. Can J Zool 62:1205–1222CrossRefGoogle Scholar
  17. Coe WR (1956) Fluctuations in populations of littoral marine invertebrates. J Mar Res 15:212–232Google Scholar
  18. Connell JH (1961a) Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecol Monogr 31:61–104. doi: 10.2307/1950746 Google Scholar
  19. Connell JH (1961b) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–723. doi: 10.2307/1933500 Google Scholar
  20. Connell JH (1985) The consequences of variation in initial settlement vs post-settlement mortality in rocky intertidal communities. J Exp Mar Biol Ecol 93:11–45. doi: 10.1016/0022-0981(85)90146-7 Google Scholar
  21. Cowen RK (2002) Larval dispersal and retention and consequences for population connectivity. In: Sale PF (ed) Coral reef fishes Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 149–170Google Scholar
  22. Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or close. Science 287:857–859. doi: 10.1126/science.287.5454.857 PubMedGoogle Scholar
  23. Cruz T, Castro JJ, Delany J, McGrath D, Myers AA, O’Riordan RM, Power A-M, Rabaca J, Hawkins SJ (2005) Tidal rates of settlement of the intertidal barnacles Chthamalus stellatus and Chthamalus montagui in western Europe: the influence of the night/day cycle. J Exp Mar Biol Ecol 318:51–60. doi: 10.1016/j.jembe.2004.12.005 Google Scholar
  24. D’Croz L, O’Dea A (2007) Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar Coast Shelf Sci 73:325–340. doi: 10.1016/j.ecss.2007.01.013 Google Scholar
  25. David P, Berthou P, Noel P, Jarne P (1997) Patchy recruitment patterns in marine invertebrates: a spatial test of the density-dependent hypothesis in the bivalve Spisula ovalis. Oecologia 111:331–340. doi: 10.1007/s004420050243 Google Scholar
  26. Eckman JE (1996) Closing the larval loop: linking larval ecology to the population dynamics of marine benthic invertebrates. J Exp Mar Biol Ecol 200:207–237. doi: 10.1016/S0022-0981(96)02644-5 Google Scholar
  27. Forward RB, Tankersley RA (2001) Selective tidal stream transport of marine animals. Oceanogr Mar Biol Ann Rev 39:305–3353Google Scholar
  28. Franks PJS (1992) Sink or swim: accumulation of biomass on fronts. Mar Ecol Prog Ser 82:1–12. doi: 10.3354/meps082001 Google Scholar
  29. Fritz ES, Crowder LB, Francis RC (1990) The national oceanic and atmospheric administration plan for recruitment fisheries oceanography research. Fisheries 15:25–31Google Scholar
  30. Gallager SM, Yamazaki H, Davis CS (2004) Contribution of fine-scale vertical structure and swimming behavior to formation of plankton layers on Georges Bank. Mar Ecol Prog Ser 267:27–43. doi: 10.3354/meps267027 Google Scholar
  31. Garland ED, Zimmer CA, Lentz SJ (2002) Larval distributions in inner-shelf waters: the roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol Oceanogr 47:803–817Google Scholar
  32. Gaylord B, Gaines SD (2000) Temperature or transport? Range limits in marine species mediated solely by flow. Am Nat 155:769–789. doi: 10.1086/303357 PubMedGoogle Scholar
  33. Genin A, Jaffe JS, Reef R, Richter C, Franks PJS (2005) Swimming against the flow: a mechanism of zooplankton aggregation. Science 308:860–862. doi: 10.1126/science.1107834 PubMedGoogle Scholar
  34. Goffredi SK, Jones WJ, Scholin CA, Marin R, Vrijenhoek RC (2006) Molecular detection of marine invertebrate larvae. Mar Biotechnol 8:149–160. doi: 10.1007/s10126-005-5016-2 PubMedGoogle Scholar
  35. Gosselin LA, Qian P-Y (1996) Early post-settlement mortality of an intertidal barnacle: a critical period for survival. Mar Ecol Prog Ser 135:69–75. doi: 10.3354/meps135069 Google Scholar
  36. Hatton H (1938) Essais de bionomie explicative sur quelques espèces intercotidales d’algues et d’animaux. Annls Inst Oceanogr Monaco 17:241–348Google Scholar
  37. Helfrich KR, Pineda J (2003) Accumulation of particles in propagating fronts. Limnol Oceanogr 48:1509–1520Google Scholar
  38. Hettler WF, Peters DS, Colby DR, Laban EH (1997) Daily variability in abundance of larval fishes inside Beaufort Inlet. Fish Bull (Wash DC) 95:477–493Google Scholar
  39. Holloway PE (1987) Internal hydraulic jumps and solitons at a shelf break region on the Australian North West shelf. J Geophys Res 92:5405–5416. doi: 10.1029/JC092iC05p05405 Google Scholar
  40. Hughes TP (1990) Recruitment limitation, mortality, and population regulation in open systems: a case study. Ecology 71:12–20. doi: 10.2307/1940242 Google Scholar
  41. Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301. doi: 10.3354/meps155269 Google Scholar
  42. Jarrett JN (2003) Seasonal variation in larval condition and postsettlement performance of the barnacle Semibalanus balanoides. Ecology 84:384–390. doi: 10.1890/0012-9658(2003)084[0384:SVILCA]2.0.CO;2 Google Scholar
  43. Jarrett JN, Pechenik JA (1997) Temporal variation in cyprid quality and juvenile growth capacity for an intertidal barnacle. Ecology 78:1262–1265Google Scholar
  44. Jeffery CJ (2000) Settlement in different-sized patches by the gregarious intertidal barnacle Chamaesipho tasmanica Foster and Anderson in New South Wales. J Exp Mar Biol Ecol 252:15–26. doi: 10.1016/S0022-0981(00)00224-0 PubMedGoogle Scholar
  45. Jeffs AG, Montgomery JC, Tindle CT (2005) How do spiny lobster post-larvae find the coast? N Z J Mar Freshw Res 39:605–617CrossRefGoogle Scholar
  46. Jenkins SR, Murua J, Burrows MT (2008) Temporal changes in the strength of density-dependent mortality and growth in intertidal barnacles. J Anim Ecol 77:573–584. doi: 10.1111/j.1365-2656.2008.01366.x PubMedGoogle Scholar
  47. Jimenez C (2001) Seawater temperature measured at the surface and at two depths (7 and 12 m) in one coral reef at Culebra Bay, Gulf of Papagayo, Costa Rica. Rev Biol Trop 49:153–161PubMedGoogle Scholar
  48. Johnson KB, Shanks AL (2003) Low rates of predation on planktonic marine invertebrate larvae. Mar Ecol Prog Ser 248:125–139. doi: 10.3354/meps248125 Google Scholar
  49. Johnson MW (1960) The offshore drift of larvae of the California spiny lobster Panulirus interruptus. Calif Coop Oceanic Fish Invest Rep 7:147–161Google Scholar
  50. Kingsford MJ, Leis J, Shanks AL, Lindeman K, Morgan S, Pineda J (2002) Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci 70:309–340Google Scholar
  51. Klymak JM, Moum JN (2003) Internal solitary waves of elevation advancing on a shoaling shelf. Geophys Res Lett 30:2045. doi: 10.1029/2003GL017706 Google Scholar
  52. Lamb K (1997) Particle transport by nonbreaking, solitary internal waves. J Geophys Res 102:18641–18660. doi: 10.1029/97JC00441 Google Scholar
  53. Le Fèvre J (1986) Aspects of the biology of frontal systems. Adv Mar Biol 23:163–299. doi: 10.1016/S0065-2881(08)60109-1 Google Scholar
  54. Lee W-J, O’Riordan R, Koh LK (2006) Spatial and temporal patterns in the recruitment of the intertidal barnacle Chthamalus malayensis Pilsbry (Crustacea: Cirripedia) on the equatorial shores of Peninsular Malaysia and Singapore. J Exp Mar Biol Ecol 333:296–305. doi: 10.1016/j.jembe.2006.01.008 Google Scholar
  55. Leis J (2007) Behaviour as input for modelling dispersal of fish larvae: behaviour, biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography. Mar Ecol Prog Ser 347:185–193. doi: 10.3354/meps06977 Google Scholar
  56. Leonard GH, Levine JM, Schmidt PR, Bertness MD (1998) Flow-driven variation in intertidal community structure in a Maine estuary. Ecology 79:1395–1411Google Scholar
  57. Leonard GH, Ewanchuk PJ, Bertness MD (1999) How recruitment, intraspecific interactions, and predation control species borders in a tidal estuary. Oecologia 118:492–502. doi: 10.1007/s004420050752 Google Scholar
  58. Leonard GH (2000) Latitudinal variation in species interactions: a test in the New England rocky intertidal zone. Ecology 81:1015–1030Google Scholar
  59. Letcher BH, Rice JA, Crowder LB, Rose KA (1996) Variability in survival of larval fish: disentangling components with a generalized individual-based model. Can J Fish Aquat Sci 53:787–801. doi: 10.1139/cjfas-53-4-787 Google Scholar
  60. Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297. doi: 10.1093/icb/icj024 Google Scholar
  61. Levin LA, Caswell H, DePatra K, Creed EL (1987) Demographic consequences of larval development mode: planktotrophy vs lecithotrophy in Streblospio benedicti. Ecology 68:1877–1886. doi: 10.2307/1939879 Google Scholar
  62. Lewis JR (1977) The role of physical and biological factors in the distribution and stability of rocky shore communities. In: Keegan BF, Ceidigh PO, Boaden PJS (eds) Biology of Benthic organisms 11th European symposium of marine biology Galway, October 1976. Pergamon Press, Oxford, pp 417–423Google Scholar
  63. Malkiel E, Sheng J, Katz J, Strickler JR (2003) The three dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J Exp Biol 206:3657–3666. doi: 10.1242/jeb.00586 PubMedGoogle Scholar
  64. Malkiel E, Abras JN, Widder EA, Katz J (2006) On the spatial distribution and nearest neighbor distance between particles in the water column determined from in situ holographic measurements. J Plankton Res 28:149–170. doi: 10.1093/plankt/fbi107 Google Scholar
  65. Menge BA (1976) Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol Monogr 46:355–393. doi: 10.2307/1942563 Google Scholar
  66. Metaxas A (2001) Behaviour in flow: perspectives on the distribution and dispersion of meroplanktonic larvae in the water column. Can J Fish Aquat Sci 58:86–98. doi: 10.1139/cjfas-58-1-86 Google Scholar
  67. Michener WK, Kenny PD (1991) Spatial and temporal patterns of Crassostrea virginica (Gmelin) recruitment: relationship to scale and substratum. J Exp Mar Biol Ecol 154:97–121. doi: 10.1016/0022-0981(91)90077-A Google Scholar
  68. Minchinton TE, Scheibling RS (1991) The influence of larval supply and settlement on the population structure of barnacles. Ecology 72:1867–1879. doi: 10.2307/1940984 Google Scholar
  69. Minchinton TE, Scheibling RS (1993a) Free space availability and larval substratum selection as determinants of barnacle population structure in a developing rocky intertidal community. Mar Ecol Prog Ser 95:233–244. doi: 10.3354/meps095233 Google Scholar
  70. Minchinton TE, Scheibling RS (1993b) Variation in sampling procedure and frequency affect estimates of recruitment of barnacles. Mar Ecol Prog Ser 99:83–88. doi: 10.3354/meps099083 Google Scholar
  71. Moksnes PO, Wennhage H (2001) Methods for estimating decapod larval supply and settlement: importance of larval behavior and development stage. Mar Ecol Prog Ser 208:257–273. doi: 10.3354/meps209257 Google Scholar
  72. Montgomery JC, Jeffs A, Simpson SD, Meekan MG, Tindle C (2006) Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv Mar Biol 51:143–196. doi: 10.1016/S0065-2881(06)51003-X PubMedGoogle Scholar
  73. Morgan SG (1995) Life and death in the plankton: larval mortality and adaptation. In: McEdward L (ed) Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, pp 279–321Google Scholar
  74. Nakaoka M (1993) Yearly variation in recruitment and its effect on population dynamics in Yoldia notabilis (Mollusca: Bivalvia) analyzed using projection matrix model. Res Popul Ecol (Kyoto) 35:199–213. doi: 10.1007/BF02513592 Google Scholar
  75. Navarrete SA, Wieters EA, Broitman B, Castilla JC (2005) Scales of benthic–pelagic coupling and the intensity of species interactions: From recruitment limitation to top-down control. Proc Natl Acad Sci USA 102:18046–18051. doi: 10.1073/pnas.0509119102 PubMedGoogle Scholar
  76. Noda T (2004) Large-scale variability in recruitment of the barnacle Semibalanus cariosus: its cause and effects on the population density and predator. Mar Ecol Prog Ser 278:241–252. doi: 10.3354/meps278241 Google Scholar
  77. North EW, Schlag Z, Hood RR, Li M, Zhoung L, Gross T, Kennedy VS (2008) Vertical swimming behavior influences the dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake Bay. Mar Ecol Prog Ser 359:99–115. doi: 10.3354/meps07317 Google Scholar
  78. Olson RR (1985) The consequences of short-distance larval dispersal in a sessile marine invertebrate. Ecology 66:30–39. doi: 10.2307/1941304 Google Scholar
  79. Paris CB, Cherubin LM, Cowen RK (2007) Surfing, spinning, or diving from reef to reef: effects on population connectivity. Mar Ecol Prog Ser 347:285–300. doi: 10.3354/meps06985 Google Scholar
  80. Paris CB, Guigand CM, Irisson JO, Fisher R, D’Allessandro E (2008) Orientation of fish larvae with no frame of reference (OWNFOR): a novel system to observe and quantify orientation in reef fish larvae in situ. Mar Sanct Conserv Ser (in press)Google Scholar
  81. Pechenick JA, Levine SH (2007) Estimates of planktonic larval mortality using the marine gastropods Crepidula fornicata and C. plana. Mar Ecol Prog Ser 344:107–118. doi: 10.3354/meps06887 Google Scholar
  82. Petratis PS, Carlson-Rhile E, Dudgeon SR (2003) Survivorship of juvenile barnacles and mussels: spatial dependence and the origin of alternative communities. J Exp Mar Biol Ecol 293:217–236. doi: 10.1016/S0022-0981(03)00219-3 Google Scholar
  83. Pineda J (1991) Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science 253:548–551. doi: 10.1126/science.253.5019.548 PubMedGoogle Scholar
  84. Pineda J (1994) Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J Mar Res 52:427–458. doi: 10.1357/0022240943077046 Google Scholar
  85. Pineda J (1999) Circulation and larval distribution in internal tidal bore warm fronts. Limnol Oceanogr 44:1400–1414Google Scholar
  86. Pineda J (2000) Linking larval settlement to larval transport: assumptions, potentials, and pitfalls. Oceaonogr East Pac 1:84–105Google Scholar
  87. Pineda J, López M (2002) Temperature, stratification and barnacle larval settlement in two Californian sites. Cont Shelf Res 22:1183–1198. doi: 10.1016/S0278-4343(01)00098-X Google Scholar
  88. Pineda J, Riebensahm D, Medeiros-Bergen D (2002) Semibalanus balanoides in winter and spring: larval concentration, settlement, and substrate occupancy. Mar Biol (Berl) 140:789–800. doi: 10.1007/s00227-001-0751-z Google Scholar
  89. Pineda J, Starczak VR, Stueckle T (2006) Timing of successful settlement: demonstration of a recruitment window in Semibalanus balanoides. Mar Ecol Prog Ser 320:233–237. doi: 10.3354/meps320233 Google Scholar
  90. Pineda J, Hare JA, Sponaugle S (2007) Larval dispersal and transport in the coastal ocean and consequences for population connectivity. Oceanography (Wash DC) 20:22–39Google Scholar
  91. Planque B, Buffaz L (2008) Quantile regression models for fish recruitment–environment relationships: four case studies. Mar Ecol Prog Ser 357:213–223. doi: 10.3354/meps07274 Google Scholar
  92. Popper KR (1982) Conocimiento objetivo. Editorial Tecnos, MadridGoogle Scholar
  93. Porri F, McQuaid CD, Radloff S (2006) Spatio-temporal variability of larval abundance and settlement of Perna perna: differential delivery of mussels. Mar Ecol Prog Ser 315:141–150. doi: 10.3354/meps315141 Google Scholar
  94. Queiroga H, Blanton J (2005) Interactions between behavior and physical forcing in the control of horizontal transport of decapod crustacean larvae. Adv Mar Biol 47:107–214. doi: 10.1016/S0065-2881(04)47002-3 PubMedGoogle Scholar
  95. Queiroga H, Almeida MJ, Alpuim T, Flores AAV, Francisco S, Gonzàlez-Gordillo I, Miranda AI, Silva I, Paula J (2006) Tide and wind control of megalopal supply to estuarine crab populations on the Portuguese west coast. Mar Ecol Prog Ser 307:21–36. doi: 10.3354/meps307021 Google Scholar
  96. Reyns N, Sponaugle S (1999) Patterns and processes of brachyuran crab settlement to Caribbean coral reefs. Mar Ecol Prog Ser 185:155–170. doi: 10.3354/meps185155 Google Scholar
  97. Reyns NB, Eggleston DB, Luettich RA (2006) Secondary dispersal of early juvenile blue crabs within a wind-driven estuary. Limnol Oceanogr 51:1982–1995Google Scholar
  98. Reyns NB, Eggleston DB, Luettich RA (2007) Dispersal dynamics of postlarval blue crabs, Callinectes sapidus, within a wind-driven estuary. Fish Oceanogr 16:257–272. doi: 10.1111/j.1365-2419.2007.00420.x Google Scholar
  99. Roberts CM (1997) Connectivity and management of Caribbean coral reefs. Science 278:1454–1457. doi: 10.1126/science.278.5342.1454 PubMedGoogle Scholar
  100. Roughgarden J, Iwasa Y, Baxter J (1985) Demographic theory for an open marine population with space-limited recruitment. Ecology 66:54–67. doi: 10.2307/1941306 Google Scholar
  101. Saarinen E (ed) (1980) Conceptual issues in ecology. Reidel, DordrechtGoogle Scholar
  102. Scheltema RS (1986) On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull Mar Sci 39:290–322Google Scholar
  103. Scotti A, Pineda J (2004) Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophys Res Lett 31:L22307. doi: 10.1029/2004GL021052 Google Scholar
  104. Scotti A, Pineda J (2007) Plankton accumulation and transport in propagating nonlinear internal fronts. J Mar Res 65:117–145. doi: 10.1357/002224007780388702 Google Scholar
  105. Scotti A, Beardsley RC, Butman B (2007) Generation and propagation of nonlinear internal waves in Massachusetts Bay. J Geophys Res. doi: 10.1029/2007JC004313
  106. Shanks AL, Brink L (2005) Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar Ecol Prog Ser 302:1–12. doi: 10.3354/meps302001 Google Scholar
  107. Simpson JE (1997) Gravity currents in the environment and the laboratory. Cambridge University Press, CambridgeGoogle Scholar
  108. Simpson JE, Britter RE (1979) The dynamics of the head of a gravity current advancing over a horizontal surface. J Fluid Mech 94:477–495. doi: 10.1017/S0022112079001142 Google Scholar
  109. Sponaugle S, Cowen RK, Shanks AL, Morgan SG, Leis J, Pineda J, Boehlert G, Kingsford MJ, Lindeman K, Grimes C, Munro JL (2002) Predicting self-recruitment in marine populations: biophysical correlates and mechanisms. Bull Mar Sci 70:341–375Google Scholar
  110. Sponaugle S, Grorud-Colver K, Pinkard D (2006) Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar Ecol Prog Ser 308:1–15. doi: 10.3354/meps308001 Google Scholar
  111. Stommel H (1963) Varieties of oceanographic experience. Science 139:572–576. doi: 10.1126/science.139.3555.572 PubMedGoogle Scholar
  112. Tapia F, Pineda J (2007) Stage-specific distribution of barnacle larvae in nearshore waters: potential for limited dispersal and high mortality rates. Mar Ecol Prog Ser 342:177–190. doi: 10.3354/meps342177 Google Scholar
  113. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev Camb Philos Soc 25:1–45. doi: 10.1111/j.1469-185X.1950.tb00585.x Google Scholar
  114. Underwood AJ (2000) Experimental ecology of rocky intertidal habitats: what are we learning? J Exp Mar Biol Ecol 250:51–76. doi: 10.1016/S0022-0981(00)00179-9 PubMedGoogle Scholar
  115. Wethey DS (1985) Catastrophe, extinction, and species diversity: a rocky intertidal example. Ecology 66:445–456. doi: 10.2307/1940393 Google Scholar
  116. Wethey DS (1986) Local and regional variation in settlement and survival in the littoral barnacle Semibalanus balanoides (L.): patterns and consequences. In: Moore PG, Seed R (eds) The ecology of rocky coasts. Columbia University Press, New York, pp 194–202Google Scholar
  117. Wimsatt WC (1980) Reductionistic research strategies and their biases in the units of selection controversy. In: Saarinen E (ed) Conceptual issues in ecology. Reidel, Dordrecht, pp 155–201Google Scholar
  118. Winant CD (1974) Internal surges in coastal waters. J Geophys Res 79:4523–4526. doi: 10.1029/JC079i030p04523 Google Scholar
  119. Yoshioka PM (1982) Role of planktonic and benthic factors in the population dynamics of the bryozoan Membranipora membranacea. Ecology 63:457–468. doi: 10.2307/1938963 Google Scholar
  120. Zimmerman RC, Robertson DL (1985) Effects of El Niño on local hydrography and growth of the giant kelp, Macrocystis pyrifera, at Santa Catalina island, California. Limnol Oceanogr 30:1298–1302CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2008

Authors and Affiliations

  • Jesús Pineda
    • 1
    Email author
  • Nathalie B. Reyns
    • 2
  • Victoria R. Starczak
    • 1
  1. 1.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Marine Science and Environmental StudiesUniversity of San DiegoSan DiegoUSA

Personalised recommendations