Population Ecology

, Volume 51, Issue 1, pp 41–55 | Cite as

Metacommunity-level coexistence mechanisms in rocky intertidal sessile assemblages based on a new empirical synthesis

  • Takashi Noda
Special Feature: Review Spatial Connectivity and Scaling


Advances in community ecology rely on connecting empirical work to theoretical frameworks. In a metacommunity, various coexistence mechanisms should operate on various spatial scales. This review attempts to provide a new empirical synthesis organizing various coexistence mechanisms operating in real metacommunities. This synthesis is based on (1) theoretical frameworks involving comparative predictions and assumptions of various coexistence hypotheses, and (2) empirical understanding of the context dependency of species interactions relating to environmental heterogeneity. By applying this synthesis to rocky intertidal sessile assemblages, which are model systems for studying competitive coexistence, I attempt to provide several integrative views of coexistence and future prospects for research in this system. Nine types of common coexistence mechanism, including five local coexistence mechanisms, two coexistence mechanisms in a homogeneous competitive environment, and two mechanisms in a heterogeneous competitive environment are found to operate in rocky intertidal sessile metacommunities, and their relative importance varies depending on species group, environment, and spatial scale.


Competition Environmental heterogeneity and patchiness Spatial scale Stabilizing mechanism Trade-off 



I thank T. Ohgushi, M. Kondo, G. Takimoto, S. Aiba, M. Naoe, T. Okuda, M. Tsujino, T. Hagino, and K. Fukaya for comments that greatly improved earlier versions of the manuscript. I thank D.M. Munroe for improving the English text.


  1. Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122. doi: 10.1046/j.1461-0248.2003.00530.x CrossRefGoogle Scholar
  2. Amarasekare P, Nisbet RM (2001) Spatial heterogeneity, source–sink dynamics, and the local coexistence of competing species. Am Nat 158:572–584. doi: 10.1086/323586 PubMedCrossRefGoogle Scholar
  3. Amarasekare P, Hoopes MF, Mouquet N, Holyoak M (2004) Mechanisms of coexistence in competitive metacommunities. Am Nat 164:310–326. doi: 10.1086/422858 PubMedCrossRefGoogle Scholar
  4. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193. doi: 10.1016/0169-5347(94)90088-4 CrossRefGoogle Scholar
  5. Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989CrossRefGoogle Scholar
  6. Bruno JF, Bertness MD (2001) Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 201–218Google Scholar
  7. Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125. doi: 10.1016/S0169-5347(02)00045-9 CrossRefGoogle Scholar
  8. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. doi: 10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  9. Chiba S, Noda T (2000) Factors maintaining topography-related mosaic of sessile epibenthos on a rocky shore: the effects of rock-surface topography and conspecifc adults on recruitment. J Mar Biol Assoc UK 80:617–622. doi: 10.1017/S0025315400002435 CrossRefGoogle Scholar
  10. Connell JH (1961) The influence of intra-specific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–723. doi: 10.2307/1933500 CrossRefGoogle Scholar
  11. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer BJ, Gradwell GR (eds) Dynamics of populations. Centre for Agricultural Publishing and Documentation, Wageningen, pp 298–310Google Scholar
  12. Connell JH (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Syst 3:169–192. doi: 10.1146/ CrossRefGoogle Scholar
  13. Dayton PK (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389. doi: 10.2307/1948498 CrossRefGoogle Scholar
  14. Denny MW, Daniel TL, Koehl MAR (1985) Mechanical limits to size in wave-swept organisms. Ecol Monogr 55:69–102. doi: 10.2307/1942526 CrossRefGoogle Scholar
  15. Farrell TM (1991) Models and mechanisms of succession: an example from a rocky intertidal community. Ecol Monogr 61:95–113. doi: 10.2307/1943001 CrossRefGoogle Scholar
  16. Hastings A (1980) Disturbance, coexistence, history and competition for space. Theor Popul Biol 18:363–373. doi: 10.1016/0040-5809(80)90059-3 CrossRefGoogle Scholar
  17. Holt RD, Grover J, Tilman D (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am Nat 144:741–771. doi: 10.1086/285705 CrossRefGoogle Scholar
  18. Holyoak M, Leibold MA, Mouquet N, Holt RD, Hoopes MF (2005) Metacommunities: a framework for large-scale community ecology. In: Holyoak M, Leibold A, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. The University of Chicago Press, Chicago, pp 1–31Google Scholar
  19. Hori M, Noda T (2001) Spatio-temporal variation of avian foraging in the rocky intertidal food web. J Anim Ecol 70:122–137. doi: 10.1046/j.1365-2656.2001.00467.x CrossRefGoogle Scholar
  20. Hubbell SP (2001) The Unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  21. Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  22. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528. doi: 10.1086/282687 CrossRefGoogle Scholar
  23. Kawai T, Tokeshi M (2007) Testing the facilitation? competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors. Proc R Soc Lond B Biol Sci 274:2503–2508. doi: 10.1098/rspb.2007.0871 CrossRefGoogle Scholar
  24. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020. doi: 10.1890/01-0622 CrossRefGoogle Scholar
  25. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi: 10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  26. Levene JM, Murrel DJ (2003) The community-level consequences of seed dispersal patterns. Annu Rev Ecol Evol Syst 34:549–574. doi: 10.1146/annurev.ecolsys.34.011802.132400 CrossRefGoogle Scholar
  27. Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297. doi: 10.1093/icb/icj024 CrossRefGoogle Scholar
  28. Levine JM, Rees M (2002) Coexistence and relative abundance in annual plant assemblages: the roles of competition and colonization. Am Nat 160:452–467. doi: 10.1086/342073 PubMedCrossRefGoogle Scholar
  29. Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proc Natl Acad Sci USA 68:1246–1248. doi: 10.1073/pnas.68.6.1246 PubMedCrossRefGoogle Scholar
  30. Lively CM, Raimondi PT, Delph LF (1993) Intertidal community structure: space-time interactions in the Northern Gulf of California. Ecology 74:162–173. doi: 10.2307/1939511 CrossRefGoogle Scholar
  31. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, CambridgeGoogle Scholar
  32. Lohse DP (1993a) The effects of substratum type on the population dynamics of three common intertidal animals. J Exp Mar Biol Ecol 173:133–154. doi: 10.1016/0022-0981(93)90212-7 CrossRefGoogle Scholar
  33. Lohse DP (1993b) The importance of secondary substratum in a rocky intertidal community. J Exp Mar Biol Ecol 166:1–17. doi: 10.1016/0022-0981(93)90075-Y CrossRefGoogle Scholar
  34. Lubchenco J (1983) Littornia and fucus: effects of herbivores, substratum heterogeneity, and plant escapes during succession. Ecology 94:1116–1123. doi: 10.2307/1937822 CrossRefGoogle Scholar
  35. MacArthur RH, Levins R (1967) The limiting similarity, convergence and divergence of coexisting species. Am Nat 101:377–385. doi: 10.1086/282505 CrossRefGoogle Scholar
  36. McPeek MA, Gomulkiewicz R (2005) Assembling and depleting species richness in metacommunities: insights from ecology, population genetics, and macroevolution. In: Holyoak M, Leibold A, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. The University of Chicago Press, Chicago, pp 355–373Google Scholar
  37. McQuaid CD, Branch GM (1984) Influence of sea temperature, substratum and wave exposure on rocky intertidal communities: an analysis of faunal and floral biomass. Mar Ecol Prog Ser 19:145–151. doi: 10.3354/meps019145 CrossRefGoogle Scholar
  38. Menge BA (1995) Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecol Monogr 65:21–74. doi: 10.2307/2937158 CrossRefGoogle Scholar
  39. Menge BA, Branch GM (2001) Rocky intertidal communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 221–252Google Scholar
  40. Menge BA, Olson AM (1990) Role of scale and environmental factors in regulation of community structure. Trends Ecol Evol 5:52–57. doi: 10.1016/0169-5347(90)90048-I CrossRefGoogle Scholar
  41. Menge BA, Sutherland JP (1987) Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat 130:730–757. doi: 10.1086/284741 CrossRefGoogle Scholar
  42. Menge BA, Berlow EL, Blanchette CA, Navarrete SA, Yamada SB (1994) The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecol Monogr 64:249–286. doi: 10.2307/2937163 CrossRefGoogle Scholar
  43. Menge BA, Daley BA, Wheeler PA, Dahlhoff E, Sanford E, Strub PT (1997) Benthic-pelagic links and rocky intertidal communities: bottom-up effects on top-down control? Proc Natl Acad Sci USA 94:14530–14535. doi: 10.1073/pnas.94.26.14530 PubMedCrossRefGoogle Scholar
  44. Menge BA, Lubchenco J, Bracken MES, Chan F, Foley MM, Freidenburg TL et al (2003) Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc Natl Acad Sci USA 100:12229–12234. doi: 10.1073/pnas.1534875100 PubMedCrossRefGoogle Scholar
  45. Minchinton TE, Scheibling RE (1993) Free space availability and larval substratum selection as determinants of barnacle population structure in a developing rocky intertidal community. Mar Ecol Prog Ser 95:233–244CrossRefGoogle Scholar
  46. Miyamoto Y, Noda T (2004) Effects of mussels on competitively inferior species: competitive exclusion to facilitation. Mar Ecol Prog Ser 276:293–298. doi: 10.3354/meps276293 CrossRefGoogle Scholar
  47. Mouquet N, Hoopes MF, Amarasekare P (2005) The world is patchy and heterogeneous! trade-off and source–sink dynamics in competitive metacommunities. In: Holyoak M, Leibold A, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. The University of Chicago Press, Chicago, pp 237–262Google Scholar
  48. Muko S, Iwasa Y (2003) Incomplete mixing promotes species coexistence in a lottery model with permanent spatial heterogeneity. Theor Popul Biol 64:359–368. doi: 10.1016/S0040-5809(03)00085-6 PubMedCrossRefGoogle Scholar
  49. Murdoch WW, Oaten A (1975) Population and population stability. Adv Ecol Res 9:1–131. doi: 10.1016/S0065-2504(08)60288-3 CrossRefGoogle Scholar
  50. Murrell DJ, Law R (2003) Heteromyopia and the spatial coexistence of similar competitors. Ecol Lett 6:48–59. doi: 10.1046/j.1461-0248.2003.00397.x CrossRefGoogle Scholar
  51. Namba T (1984) Competitive co-existence in a seasonally fluctuating environment. J Theor Biol 111:369–386. doi: 10.1016/S0022-5193(84)80216-7 CrossRefGoogle Scholar
  52. Namba T, Hashimoto C (2004) Dispersal-mediate coexistence of competing predators. Theor Popul Biol 66:53–70. doi: 10.1016/j.tpb.2004.03.003 PubMedCrossRefGoogle Scholar
  53. Namba T, Takahashi S (1993) Competitive coexistence in a seasonally fluctuating environment II. Multiple stable states and invasion success. Theor Popul Biol 44:374–402. doi: 10.1006/tpbi.1993.1033 CrossRefGoogle Scholar
  54. Nishimura K, Kishida O (2001) Coupling of two competitive systems via density dependent migration. Ecol Res 16:359–368. doi: 10.1046/j.1440-1703.2001.00401.x CrossRefGoogle Scholar
  55. Noda T, Fukushima K, Mori T, Ban S (2000) Daily variability in height-related settlement-pattern in an intertidal barnacle. J Mar Biol Assoc UK 80:545–546. doi: 10.1017/S0025315400002253 CrossRefGoogle Scholar
  56. Noda T, Minamiura N, Miyamoto Y (2003) Seasonal changes in an intertidal annual algal assemblage in northern Japan: the role of pre-emption and grazing on algal replacement. Ecol Res 18:695–709. doi: 10.1111/j.1440-1703.2003.00589.x CrossRefGoogle Scholar
  57. Pacala SW, Rees M (1998) Models suggesting field experiments to test two hypotheses explaining successional diversity. Am Nat 152:729–737. doi: 10.1086/286203 PubMedCrossRefGoogle Scholar
  58. Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75. doi: 10.1086/282400 CrossRefGoogle Scholar
  59. Paine RT (1988) Habitat suitability and local population persistence of the sea palm Postelsia palmaeformis. Ecology 69:1787–1794. doi: 10.2307/1941157 CrossRefGoogle Scholar
  60. Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol 30:273–335Google Scholar
  61. Pineda J, Caswell H (1997) Dependence of settlement rate on suitable substrate area. Mar Biol (Berl) 129:541–548. doi: 10.1007/s002270050195 CrossRefGoogle Scholar
  62. Pollock MM, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands: a test of biodiversity theory. Ecology 79:94–105Google Scholar
  63. Raffaelli D, Hawkins S (1996) Intertidal ecology. Kluwer, LondonGoogle Scholar
  64. Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450. doi: 10.1007/s004420000533 CrossRefGoogle Scholar
  65. Sebens KP, Lewis JR (1985) Rare events and population structure of the barnacle Semibalanus cariosus. J Exp Mar Biol Ecol 87:55–65. doi: 10.1016/0022-0981(85)90192-3 CrossRefGoogle Scholar
  66. Sharma NK, Samra JS, Singh HP (2000) Effect of leaf litter of popular on Phalaris minor weed. Allelopathy J 7:243–253Google Scholar
  67. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi: 10.1016/j.tree.2004.09.003 CrossRefGoogle Scholar
  68. Sousa WP (1979) Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol Monogr 49:227–254. doi: 10.2307/1942484 CrossRefGoogle Scholar
  69. Sousa WP (2001) Natural disturbance and the dynamics of marine benthic communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 85–130Google Scholar
  70. Sousa WP, Connell JH (1992) Grazing and succession in marine algae. In: John DM, Hawkins SJ, Price JH (eds) Plant-animal interactions in the marine benthos. Clarendon Press, Oxford, pp 425–441Google Scholar
  71. Srivastava D (1999) Using local-regional richness plots to test for species saturation: pitfalls and potential. J Anim Ecol 68:1–16. doi: 10.1046/j.1365-2656.1999.00266.x CrossRefGoogle Scholar
  72. Stephenson TA, Stephenson A (1972) Life between tidemarks on rocky shores. W.H. Freeman, San FranciscoGoogle Scholar
  73. Tilman D (1982) Resource competition and community structure. Princeton University Press, PrincetonGoogle Scholar
  74. Tilman D (1994) Competition and biodiversity in spatially structured habitat. Ecology 75:2–16. doi: 10.2307/1939377 CrossRefGoogle Scholar
  75. Underwood AJ, Denley EJ (1984) Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shore. In: Strong DR Jr, Simberloff D, Abele LG, Thistle AB (eds) Ecological communities: conceptual issues and the evidence. Princeton University Press, Prenceton, pp 151–180Google Scholar
  76. Warner RR, Chesson PL (1985) Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am Nat 125:769–787. doi: 10.1086/284379 CrossRefGoogle Scholar
  77. Wilson DS (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000. doi: 10.2307/1941449 CrossRefGoogle Scholar
  78. Wootton JT (1993) Size-dependent competition: effects on the dynamics vs. the endpoint of mussel bed succession. Ecology 74:195–206. doi: 10.2307/1939514 CrossRefGoogle Scholar
  79. Wootton JT (2005) Field parameterization and experimental test of the neutral theory of biodiversity. Nature 433:309–312. doi: 10.1038/nature03211 PubMedCrossRefGoogle Scholar
  80. Wootton JT, Power ME, Paine RT, Pfister CA (1996) Effects of productivity, consumer, competitors, an El Nino on food chain patterns in a rocky intertidal community. Proc Natl Acad Sci USA 93:13855–13858. doi: 10.1073/pnas.93.24.13855 PubMedCrossRefGoogle Scholar
  81. Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14Google Scholar
  82. Yu DW, Wilson HB (2001) The competition-colonization trade-off is dead; long live the competitive-colonization trade-off. Am Nat 158:49–63. doi: 10.1086/320865 PubMedCrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2008

Authors and Affiliations

  1. 1.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan

Personalised recommendations