Population Ecology

, Volume 51, Issue 1, pp 161–174 | Cite as

Analysing spatial and temporal variation in colony size: an approach using autoregressive mixed models and information theory

Original Article

Abstract

The spatial and temporal variation in population sizes of animal colonies are rarely studied simultaneously. I examined factors determining colony size (number of nests) for 23 colonies from the only breeding population of rook Corvus frugilegus in Spain over 7 years. Population sizes within colonies were highly predictable over time, with autocorrelations up to a distance (lag) of 6 years. Autoregressive mixed models were used to explain colony size as a function of environmental factors, while controlling for temporal autocorrelation. These factors included refuse tips, widely used as food resource, and a derived variable that incorporated the two factors most often related to avian colony size (inter-colony competition and foraging habitat around colonies). Autoregressive models provided a better fit to the data than models which did not consider temporal autocorrelation. The information-theoretic (AICc-based) approach revealed uncertainty in the selection of the best model explaining colony-size, but relatively strong support for certain variables. The highest weights of evidence were for year (ωi = 0.90) and the number of competitors per unit of foraging habitat (i.e., derived variable; ωi = 0.63), showing that the size of rook colonies in Spain was negatively affected by inter-colony competition relative to the foraging habitat surrounding the colonies. This variable measured within a 6-km radius from the colonies had ~30 times higher weight of evidence (more plausible) than the same variable measured within 3 km, indicating that food limitation may occur outside the breeding period. Sizes of colonies tended to decrease when distance between the colony and the nearest refuse tip increased. There was some evidence supporting the idea that the effect of the number of competitors per unit of foraging habitat on colony size varied from year to year, but statistical power was weak. These findings suggest that variation in number of rook nests within colonies reflects spatial and temporal heterogeneity of net food via both inter-colony competition and foraging habitat around the colony.

Keywords

AIC Derived variable Corvus frugilegus Rook Glmm Temporal autocorrelation 

Supplementary material

10144_2008_106_MOESM1_ESM.doc (110 kb)
Table S1 (DOC 110 KB)

References

  1. Ainley DG, Nur N, Woehler EJ (1995) Factors affecting the distribution and size of pygoscelid penguin colonies in the Antarctic. Auk 112:171–182Google Scholar
  2. Ainley DG, Ford RG, Brown ED, Suryan RM, Irons DB (2003) Prey resources, competition, and geographic structure of kittiwake colonies in Prince William Sound. Ecology 84:709–723. doi:10.1890/0012-9658(2003)084[0709:PRCAGS]2.0.CO;2 CrossRefGoogle Scholar
  3. Ainley DG, Ribic CA, Ballard G, Heath S, Gaffney I, Karl BJ et al (2004) Geographic structure of Adelie Penguin populations: overlap in colony-specific foraging areas. Ecol Monogr 74:159–178. doi:10.1890/02-4073 CrossRefGoogle Scholar
  4. Ambrosini R, Bolzern AM, Canova L, Arieni S, Moller AP, Saino N (2002) The distribution and colony size of barn swallows in relation to agricultural land use. J Appl Ecol 39:524–534. doi:10.1046/j.1365-2664.2002.00721.x CrossRefGoogle Scholar
  5. Ashmole NP (1963) The regulation of numbers of tropical oceanic seabirds. Ibis 103:458–473. doi:10.1111/j.1474-919X.1963.tb06766.x CrossRefGoogle Scholar
  6. Barbraud C, Lepley M, Mathevet R, Mauchamp A (2002) Reedbed selection and colony size of breeding Purple Herons Ardea purpurea in southern France. Ibis 144:227–235. doi:10.1046/j.1474-919X.2002.00047.x CrossRefGoogle Scholar
  7. Bascompte J, Solé RV (1995) Rethinking complexity—modeling spatiotemporal dynamics in ecology. Trends Ecol Evol 10:361–366. doi:10.1016/S0169-5347(00)89134-X CrossRefGoogle Scholar
  8. Beale CM, Lennon JJ, Elston DA, Brewer MJ, Yearsley JM (2007) Red herrings remain in geographical ecology: a reply to Hawkins et al. (2007). Ecography 30:845–847CrossRefGoogle Scholar
  9. Bonal R, Aparicio JM (2008) Evidence of prey depletion around lesser kestrel Falco naumanni colonies and its short term negative consequences. J Avian Biol 39:189–197. doi:10.1111/j.2008.0908-8857.04125.x CrossRefGoogle Scholar
  10. Brenchley A (1986) The breeding distribution and abundance of the Rook (Corvus frugilegus L) in Great-Britain since the 1920s. J Zool 210:261–278Google Scholar
  11. Brown CR, Brown MB (2001) Avian coloniality: progress and problems. Curr Ornithol 16:1–82Google Scholar
  12. Brown CR, Brown MB (2002) Does intercolony competition for food affect colony choice in Cliff Swallows? Condor 104:117–128. doi:10.1650/0010-5422(2002)104[0117:DICFFA]2.0.CO;2 CrossRefGoogle Scholar
  13. Brown CR, Rannala B (1995) Colony choice in birds—models based on temporally invariant site quality. Behav Ecol Sociobiol 36:221–228. doi:10.1007/BF00165830 CrossRefGoogle Scholar
  14. Brown CR, Sas CM, Brown MB (2002) Colony choice in Cliff swallows: effects of heterogeneity in foraging habitat. Auk 119:446–460. doi:10.1642/0004-8038(2002)119[0446:CCICSE]2.0.CO;2 CrossRefGoogle Scholar
  15. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach, 2nd edn. Springer, New YorkGoogle Scholar
  16. Carroll SS, Pearson DL (2000) Detecting and modeling spatial and temporal dependence in conservation biology. Conserv Biol 14:1893–1897. doi:10.1046/j.1523-1739.2000.99432.x CrossRefGoogle Scholar
  17. Coombs CJF (1960) Observations on the rook Corvus frugilegus in southwest Cornwall. Ibis 102:394–419. doi:10.1111/j.1474-919X.1960.tb08417.x CrossRefGoogle Scholar
  18. Cramp S, Perrins CM (eds) (1994) Handbook of the birds of Europe, the Middle East and North Africa. vol VIII. Oxford University Press, OxfordGoogle Scholar
  19. Crawley MJ (2002) Statistical computing. An introduction to data analysis using S-Plus . Wiley, Sussex EnglandGoogle Scholar
  20. Danchin E, Wagner RH (1997) The evolution of coloniality: the emergence of new perspectives. Trends Ecol Evol 12:342–347. doi:10.1016/S0169-5347(97)01124-5 CrossRefGoogle Scholar
  21. Del Amo L, Ena V (1986) Alimentación de la graja (Corvus frugilegus) durante el periodo reproductor en la provincia de León. Miscel Zool 10:299–303Google Scholar
  22. Diniz-Filho JA, Hawkins BA, Bini LM, De Marco P, Blackburn TM (2007) Are spatial regression methods a panacea or a Pandora’s box? A reply to Beale et al. (2007) Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30:848–851Google Scholar
  23. Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. doi:10.1111/j.2007.0906-7590.05171.x CrossRefGoogle Scholar
  24. Ena V (1983) Autoecología de la graja (Corvus frugilegus) en la provincia de León. Diputación Provincial de León, LeónGoogle Scholar
  25. Ena V (1984) A population study of the rook (Corvus frugilegus) in León province, northwest Spain. Ibis 126:240–249. doi:10.1111/j.1474-919X.1984.tb08003.x CrossRefGoogle Scholar
  26. Feare CJ, Dunnet GM, Patterson IJ (1974) Ecological studies of rook (Corvus frugilegus L) in northeast Scotland—food-intake and feeding behavior. J Appl Ecol 11:867–896. doi:10.2307/2401751 CrossRefGoogle Scholar
  27. Forero MG, Tella JL, Hobson KA, Bertellotti M, Blanco G (2002) Conspecific food competition explains variability in colony size: a test in Magellanic Penguins. Ecology 83:3466–3475Google Scholar
  28. Furness RW, Birkhead TR (1984) Seabird colony distributions suggest competition for food supplies during the breeding-season. Nature 311:655–656. doi:10.1038/311655a0 CrossRefGoogle Scholar
  29. Gibbs JP (1991) Spatial relationships between nesting colonies and foraging areas of great blue herons. Auk 108:764–770Google Scholar
  30. Gibbs JP, Woodward S, Hunter ML, Hutchinson AE (1987) Determinants of great blue heron colony distribution in coastal Maine. Auk 104:38–47Google Scholar
  31. Gimona A, Brewer MJ (2006) Local environmental effects and spatial effects in macroecological studies using mapped abundance classes: the case of the rook Corvus frugilegus in Scotland. J Anim Ecol 75:1140–1146. doi:10.1111/j.1365-2656.2006.01134.x PubMedCrossRefGoogle Scholar
  32. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815. doi:10.1890/02-3114 CrossRefGoogle Scholar
  33. Green JL, Hastings A, Arzberger P, Ayala FJ, Cottingham KL, Cuddington K et al (2005) Complexity in ecology and conservation: Mathematical, statistical, and computational challenges. Bioscience 55:501–510. doi:10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2 CrossRefGoogle Scholar
  34. Griffin LR (1999) Colonization patterns at rook Corvus frugilegus colonies: implications for survey strategies. Bird Study 46:170–173CrossRefGoogle Scholar
  35. Griffin LR, Thomas CJ (2000) The spatial distribution and size of rook (Corvus frugilegus) breeding colonies is affected by both the distribution of foraging habitat and by intercolony competition. Proc R Soc Lond B Biol Sci 267:1463–1467. doi:10.1098/rspb.2000.1165 CrossRefGoogle Scholar
  36. Hawkins BA, Diniz-Filho JA, Bini LM, De Marco P, Blackburn TM (2007) Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30:375–384Google Scholar
  37. Kaluzny SP, Vega SC, Cardoso TP, Shelly AA (1998) S+ spatial stats. User’s manual for windows® and Unix®. Springer, New YorkGoogle Scholar
  38. Kasprzykowski Z (2003) Habitat preferences of foraging rooks Corvus frugilegus during the breeding period in the agricultural landscape of eastern Poland. Acta Ornithol 38:27–31Google Scholar
  39. Keitt TH, Bjørnstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25:616–625. doi:10.1034/j.1600-0587.2002.250509.x CrossRefGoogle Scholar
  40. Koenig W (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26. doi:10.1016/S0169-5347(98)01533-X PubMedCrossRefGoogle Scholar
  41. Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463CrossRefGoogle Scholar
  42. MacDonald RA, Whelan J (1986) Seasonal-variations in feeding range and flock structure of the rook Corvus frugilegus in Eastern Ireland. Ibis 128:540–557. doi:10.1111/j.1474-919X.1986.tb02705.x CrossRefGoogle Scholar
  43. McAlpine CA, Rhodes JR, Bowen ME, Lunney D, Callaghan JG, Mitchell DL et al (2008) Can multiscale models of species’ distribution be generalized from region to region? A case study of the koala. J Appl Ecol 45:558–567. doi:10.1111/j.1365-2664.2007.01431.x CrossRefGoogle Scholar
  44. Olea PP (2000) Ecología de la población reproductora de graja Corvus frugilegus en la provincia de León. Universidad de León, LeónGoogle Scholar
  45. Olea PP (2001) Contribución al conocimiento de la ecología de tres especies de aves coloniales: buitre leonado Gyps fulvus, cernícalo primilla Falco naumanni y graja Corvus frugilegus. Doctoral Thesis. Universidad de León, LeónGoogle Scholar
  46. Olea PP, Baglione V (2008) Population trends of Rooks Corvus frugilegus in Spain and the importance of refuse tips. Ibis 150:98–109Google Scholar
  47. Olea PP, García J, Férnandez J, Román J, González-Vélez M, Gutiérrez C (1997) Situación actual de la población reproductora de graja (Corvus frugilegus) en España. Ardeola 41:3–7Google Scholar
  48. Patterson IJ, Dunnet GM, Fordham FA (1971) Ecological studies of rook, Corvus frugilegus l in North-East Scotland. Dispersion. J Appl Ecol 8:815–833. doi:10.2307/2402685 CrossRefGoogle Scholar
  49. Patterson IJ, Dunnet GM, Goodbody SR (1988) Body-weight and juvenile mortality in rooks Corvus frugilegus. J Anim Ecol 57:1041–1052. doi:10.2307/5110 CrossRefGoogle Scholar
  50. Patterson IJ, Grace ES (1984) Recruitment of young rooks, Corvus frugilegus, into breeding populations. J Anim Ecol 53:559–572. doi:10.2307/4534 CrossRefGoogle Scholar
  51. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer, New YorkGoogle Scholar
  52. Purchas TPG (1980) Feeding ecology of rooks (Corvus frugilegus) on the Heretaunga Plains, Hawkes Bay, New Zealand. NZ J Zool 7:557–578Google Scholar
  53. Safran RJ (2004) Adaptive site selection rules and variation in group size of barn swallows: individual decisions predict population patterns. Am Nat 164:121–131. doi:10.1086/422198 CrossRefGoogle Scholar
  54. Sage BL, Vernon JDR (1978) 1975 National survey of rookeries. Bird Study 25:64–86Google Scholar
  55. Serrano D, Forero MG, Donázar JA, Tella JL (2004) Dispersal and social attraction affect colony selection and dynamics of lesser kestrels. Ecology 85:3438–3447. doi:10.1890/04-0463 CrossRefGoogle Scholar
  56. Stamps JA (1988) Conspecific attraction and aggregation in territorial species. Am Nat 131:329–347. doi:10.1086/284793 CrossRefGoogle Scholar
  57. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189. doi:10.1111/j.1365-2656.2006.01141.x PubMedCrossRefGoogle Scholar
  58. Whittingham MJ, Krebs JR, Swetnam RD, Vickery JA, Wilson JD, Freckleton RP (2007) Should conservation strategies consider spatial generality? Farmland birds show regional not national patterns of habitat association. Ecol Lett 10:25–35. doi:10.1111/j.1461-0248.2006.00992.x PubMedCrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2008

Authors and Affiliations

  1. 1.Department of Exact Sciences and Environmental Biology, Faculty of Experimental SciencesIE UniversitySegoviaSpain

Personalised recommendations