Population Ecology

, 51:123 | Cite as

Density dependence in northern ungulates: interactions with predation and resources

  • Guiming Wang
  • N. Thompson Hobbs
  • Saran Twombly
  • Randall B. Boone
  • Andrew W. Illius
  • Iain J. Gordon
  • John E. Gross
Original Article


Variation in the abundance of animals has traditionally been explained as the outcome of endogenous forcing from density dependence and exogenous forcing arising from variation in weather and predation. Emerging evidence suggests that the effects of density dependence interact with external influences on population dynamics. In particular, spatial heterogeneity in resources and the presence of capable predators may weaken feedbacks from density dependence to growth of populations. We used the Kalman filter to analyze 23 time series of estimates of abundance of northern ungulate populations arrayed along a latitudinal gradient (latitude range of 40°–70°N) to evaluate the influence of spatial heterogeneity in resources and predation on density dependence. We also used contingency tables to test whether density dependence was independent of the presence of carnivores (our estimate of predation) and multiple regressions to determine the effects of spatial heterogeneity in resources, predation, and latitude on the strength of density dependence. Our results showed that the strength of density dependence of ungulate populations was low in the presence of large carnivores, particularly at northern latitudes with low primary productivity. We found that heterogeneity in elevation, which we assume acted as a surrogate for spatial heterogeneity in plant phenology, also reduced effects of density dependence. Thus, we show that external forces created by heterogeneity in resources and predation interact with internal feedbacks from population density to shape dynamics of populations of northern ungulates.


Gompertz model Kalman filter Large carnivores Local environmental variability Predation Spatial heterogeneity 



This work was in part supported by the Large Mammalian Herbivore Dynamics Working Group supported by the National Center for Ecological Analysis and Synthesis, a center funded by the United States National Science Foundation (DEB-94-21535), the University of California, Santa Barbara, and the State of California. We are grateful to Dr. Marco Fest-Bianchet for making data on bighorn sheep in the Sheep River and Ram Mountain available for our analysis, to Ken Hamlin for data on elk of the Gravelly Mountain, Montana, and to Tim Clutton-Brock, Tim Coulson, and Josephine Pemberton, the Rum Red Deer Project and the St. Kilda Soay Sheep Project for allowing access to the data on red deer and Soay Sheep. We gratefully acknowledge support from the Ecological Biology Program of the National Science Foundation (Awards DEB 0119618 and DEB 0444711) to Colorado State University. Dr. Eric Post and two anonymous reviewers made helpful comments on our manuscript.


  1. Aanes R, Saether BE, Oritsland NA (2000) Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography 23:437–443. doi: 10.1034/j.1600-0587.2000.230406.x CrossRefGoogle Scholar
  2. Albon SD, Langvatn R (1992) Plant phenology and the benefits of migration in a temperate ungulate. Oikos 65:502–513. doi: 10.2307/3545568 CrossRefGoogle Scholar
  3. Beck PSA, Atzberger C, Hogda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100:321–334. doi: 10.1016/j.rse.2005.10.021 CrossRefGoogle Scholar
  4. Benedetti-Cecchi L (2005) Unanticipated impacts of spatial variance of biodiversity on plant productivity. Ecol Lett 8:791–799. doi: 10.1111/j.1461-0248.2005.00780.x CrossRefGoogle Scholar
  5. Boone RB, BurnSilver SB, Thornton PK, Worden JS, Galvin KA (2005) Quantifying declines in livestock due to land subdivision. Rangel Ecol Manag 58:523–532. doi: 10.2111/1551-5028(2005)58[523:QDILDT]2.0.CO;2 CrossRefGoogle Scholar
  6. Boyce MS, Haridas CV, Lee CT (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148. doi: 10.1016/j.tree.2005.11.018 PubMedCrossRefGoogle Scholar
  7. Brassil CE (2006) Can environmental variation generate positive indirect effects in a model of shared predation? Am Nat 167:43–54. doi: 10.1086/498432 PubMedCrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  9. Carbyn LN, Lunn NJ, Timoney K (1998) Trends in the distribution and abundance of bison in Wood Buffalo National Park. Wildl Soc Bull 26:463–470Google Scholar
  10. Clutton-Brock TH, Coulson TN, Milner-Gulland EJ, Thomson D, Armstrong HM (2002) Sex differences in emigration and mortality affect optimal management of deer populations. Nature 415:633–637. doi: 10.1038/415633a PubMedCrossRefGoogle Scholar
  11. Coughenour MB, Singer FJ (1996) Elk population processes in Yellowstone National Park under the policy of natural regulation. Ecol Appl 6:573–593. doi: 10.2307/2269393 CrossRefGoogle Scholar
  12. Coulson T, Catchpole EA, Albon SD, Morgan BJT, Pemberton JM, Clutton-Brock TH et al (2001) Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292:1528–1531. doi: 10.1126/science.292.5521.1528 PubMedCrossRefGoogle Scholar
  13. Crete M (1999) The distribution of deer biomass in North America supports the hypothesis of exploitation ecosystems. Ecol Lett 2:223–227. doi: 10.1046/j.1461-0248.1999.00076.x CrossRefGoogle Scholar
  14. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via EM algorithm. J R Stat Soc B 39:1–38Google Scholar
  15. Festa-Bianchet M, Coulson T, Gaillard JM, Hogg JT, Pelletier F (2006) Stochastic predation events and population persistence in bighorn sheep. Proc R Soc Lond B Biol Sci 273:1537–1543. doi: 10.1098/rspb.2006.3467 CrossRefGoogle Scholar
  16. Frank DA, McNaughton SJ (1992) The ecology of plants, large mammalian herbivores, and drought in Yellowstone National Park. Ecology 73:2043–2058. doi: 10.2307/1941454 CrossRefGoogle Scholar
  17. Freckleton RP, Watkinson AR, Green RE, Sutherland WJ (2006) Census error and the detection of density dependence. J Anim Ecol 75:837–851. doi: 10.1111/j.1365-2656.2006.01121.x PubMedCrossRefGoogle Scholar
  18. Fryxell JM, Wilmshurst JF, Sinclair ARE (2004) Predictive models of movement by Serengeti grazers. Ecology 85:2429–2435. doi: 10.1890/04-0147 CrossRefGoogle Scholar
  19. Fryxell JM, Wilmshurst JF, Sinclair ARE, Haydon DT, Holt RD, Abrams PA (2005) Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol Lett 8:328–335. doi: 10.1111/j.1461-0248.2005.00727.x CrossRefGoogle Scholar
  20. Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on the mode of determining the value of life contigencies. Philos Trans R Soc Lond B Biol Sci 115:513–585. doi: 10.1098/rstl.1825.0026 CrossRefGoogle Scholar
  21. Harvey AC (1989) Forecasting structural time series models and the Kalman filter. Cambridge University Press, CambridgeGoogle Scholar
  22. Hebblewhite M (2005) Predation by wolves interacts with the North Pacific Oscillation (NPO) on a western North American elk population. J Anim Ecol 74:226–233. doi: 10.1111/j.1365-2656.2004.00909.x CrossRefGoogle Scholar
  23. Helle T, Kojola I (1994) Body-mass variation in semidomesticated reindeer. Can J Zool 72:681–688CrossRefGoogle Scholar
  24. Hjeljord O, Histol T (1999) Range-body mass interactions of a northern ungulate: a test of hypothesis. Oecologia 119:326–339. doi: 10.1007/s004420050793 CrossRefGoogle Scholar
  25. Hobbs NT (1989) Linking energy balance to survival in mule deer: development and test of a simulation model. Wildl Monogr 101:1–39Google Scholar
  26. Hone J, Clutton-Brock TH (2007) Climate, food, density and wildlife population growth rate. J Anim Ecol 76:361–367. doi: 10.1111/j.1365-2656.2006.01200.x PubMedCrossRefGoogle Scholar
  27. Illius AW, O’Connor TG (2000) Resource heterogeneity and ungulate population dynamics. Oikos 89:283–294. doi: 10.1034/j.1600-0706.2000.890209.x CrossRefGoogle Scholar
  28. Jacobson AR, Provenzale A, von Hardenberg A, Bassano B, Festa-Bianchet M (2004) Climate forcing and density dependence in a mountain ungulate population. Ecology 85:1598–1610. doi: 10.1890/02-0753 CrossRefGoogle Scholar
  29. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:34–45Google Scholar
  30. Lima M, Stenseth NC, Jaksic FM (2002) Population dynamics of a South American rodent: seasonal structure interacting with climate, density dependence and predator effects. Proc R Soc Lond B Biol Sci 269:2579–2586. doi: 10.1098/rspb.2002.2142 CrossRefGoogle Scholar
  31. Lubow BC, Smith BL (2004) Population dynamics of the Jackson elk herd. J Wildl Manage 68:810–829. doi: 10.2193/0022-541X(2004)068[0810:PDOTJE]2.0.CO;2 CrossRefGoogle Scholar
  32. Lubow BC, Singer FJ, Johnson TL, Bowden DC (2002) Dynamics of interacting elk populations within and adjacent to Rocky Mountain National Park. J Wildl Manage 66:757–775. doi: 10.2307/3803141 CrossRefGoogle Scholar
  33. Lundberg P, Ranta E, Ripa J, Kaitala V (2000) Population variability in space and time. Trends Ecol Evol 15:460–464. doi: 10.1016/S0169-5347(00)01981-9 PubMedCrossRefGoogle Scholar
  34. Mårell A, Hofgaard A, Danell K (2006) Nutrient dynamics of reindeer forage species along snowmelt gradients at different ecological scales. Basic Appl Ecol 7:13–30. doi: 10.1016/j.baae.2005.04.005 CrossRefGoogle Scholar
  35. Merrill EH, Boyce MS (1991) Summer range and elk population dynamics in Yellowstone National Park. In: Keiter RB, Boyce MS (eds) The greater Yellowstone ecosystem: redefining America’s wilderness heritage. The Yale University Press, New Haven, pp 263–273Google Scholar
  36. Messier F (1994) Ungulate population models with predation: a case study with the North American moose. Ecology 75:478–488. doi: 10.2307/1939551 CrossRefGoogle Scholar
  37. Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2001) Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J Anim Ecol 70:915–923. doi: 10.1046/j.0021-8790.2001.00559.x CrossRefGoogle Scholar
  38. Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38. doi: 10.1034/j.1600-0706.2001.11311.x CrossRefGoogle Scholar
  39. Oksanen L, Fretwell SD, Arruda J, Niemela P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261. doi: 10.1086/283817 CrossRefGoogle Scholar
  40. Oksanen T, Oksanen L, Schneider M, Aunapuu M (2001) Regulation, cycles and stability in northern carnivore-herbivore systems: back to first principles. Oikos 94:101–117. doi: 10.1034/j.1600-0706.2001.11315.x CrossRefGoogle Scholar
  41. Owen-Smith N (2006) Demographic determination of the shape of density dependence for three African ungulate populations. Ecol Monogr 76:93–109. doi: 10.1890/05-0765 CrossRefGoogle Scholar
  42. Owen-Smith N, Mills MGL (2006) Manifold interactive influences on the population dynamics of a multispecies ungulate assemblage. Ecol Monogr 76:73–92. doi: 10.1890/04-1101 CrossRefGoogle Scholar
  43. Owen-Smith N, Mason DR, Ogutu JO (2005) Correlates of survival rates for 10 African ungulate populations: density, rainfall and predation. J Anim Ecol 74:774–788. doi: 10.1111/j.1365-2656.2005.00974.x CrossRefGoogle Scholar
  44. Peek JM, Dennis B, Hershey T (2002) Predicting population trends of mule deer. J Wildl Manage 66:729–736. doi: 10.2307/3803138 CrossRefGoogle Scholar
  45. Portier C, Festa-Bianchet M, Gaillard JM, Jorgenson JT, Yoccoz NG (1998) Effects of density and weather on survival of bighorn sheep lambs (Ovis canadensis). J Zool (Lond) 245:271–278. doi: 10.1111/j.1469-7998.1998.tb00101.x CrossRefGoogle Scholar
  46. Post E (2005) Large-scale spatial gradients in herbivore population dynamics. Ecology 86:2320–2328. doi: 10.1890/04-0823 CrossRefGoogle Scholar
  47. Putman RJ, Sharma SK (1987) Long-term changes in new forest deer populations and correlated environmental changes. In: Harris S (ed) Symposium of the Zoological Society of London. Clarendon, pp 167–179Google Scholar
  48. Ranta E, Lundberg P, Kaitala V, Laakso J (2000) Visibility of the environmental noise modulating population dynamics. Proc R Soc Lond B Biol Sci 267:1851–1856. doi: 10.1098/rspb.2000.1220 CrossRefGoogle Scholar
  49. Royama T (1992) Analytic population dynamics. Chapman and Hall, LondonGoogle Scholar
  50. Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14:361–366. doi: 10.1016/S0169-5347(99)01664-X PubMedCrossRefGoogle Scholar
  51. Shumway RH, Stoffer DS (2000) Time series analysis and its applications. Springer, New YorkGoogle Scholar
  52. Solberg EJ, Saether BE, Strand O, Loison A (1999) Dynamics of a harvested moose population in a variable environment. J Anim Ecol 68:186–204. doi: 10.1046/j.1365-2656.1999.00275.x CrossRefGoogle Scholar
  53. Spencer DL, Lensink CJ (1970) The muskox of nunivak island, Alaska. J Wildl Manage 34:1–15. doi: 10.2307/3799485 CrossRefGoogle Scholar
  54. Stenseth NC, Viljugrein H, Saitoh T, Hansen TF, Kittilsen MO, Bolviken E et al (2003) Seasonality, density dependence, and population cycles in Hokkaido voles. Proc Natl Acad Sci USA 100:11478–11483. doi: 10.1073/pnas.1935306100 PubMedCrossRefGoogle Scholar
  55. Stenseth NC, Shabbar A, Chan KS, Boutin S, Rueness EK, Ehrich D et al (2004) Snow conditions may create an invisible barrier for lynx. Proc Natl Acad Sci USA 101:10632–10634. doi: 10.1073/pnas.0308674101 PubMedCrossRefGoogle Scholar
  56. Stoffer DS, Wall KD (1991) Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter. J Am Stat Assoc 86:1024–1033. doi: 10.2307/2290521 CrossRefGoogle Scholar
  57. Taper ML, Gogan PJP (2002) The northern Yellowstone elk: density dependence and climatic conditions. J Wildl Manage 66:106–122. doi: 10.2307/3802877 CrossRefGoogle Scholar
  58. Wang GM, Hobbs NT, Singer FJ, Ojima DS, Lubow BC (2002) Impacts of climate changes on elk population dynamics in Rocky Mountain National Park, Colorado, USA. Clim Change 54:205–223. doi: 10.1023/A:1015725103348 CrossRefGoogle Scholar
  59. Wang GM, Hobbs NT, Boone RB, Illius AW, Gordon IJ, Gross JE et al (2006) Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87:95–102. doi: 10.1890/05-0355 PubMedCrossRefGoogle Scholar
  60. Werner M (2001) Shuttle radar topography mission (SRTM) mission overview. Frequenz 55:75–79Google Scholar
  61. Wilmers CC, Post E, Hastings A (2007) A perfect storm: the combined effects on population fluctuations of autocorrelated environmental noise, age structure, and density dependence. Am Nat 169:673–683. doi: 10.1086/513484 PubMedCrossRefGoogle Scholar
  62. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2008

Authors and Affiliations

  • Guiming Wang
    • 1
  • N. Thompson Hobbs
    • 2
  • Saran Twombly
    • 3
    • 7
  • Randall B. Boone
    • 2
  • Andrew W. Illius
    • 4
  • Iain J. Gordon
    • 5
  • John E. Gross
    • 6
  1. 1.Department of Wildlife and FisheriesMississippi State UniversityMississippi StateUSA
  2. 2.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA
  3. 3.Department of Biological SciencesUniversity of Rhode IslandKingstonUSA
  4. 4.Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
  5. 5.CSIRO Davies LaboratoryAitkenvaleAustralia
  6. 6.Office of Inventory, Monitoring and EvaluationNational Park ServiceFort CollinsUSA
  7. 7.Division of Environmental BiologyNational Science FoundationArlingtonUSA

Personalised recommendations