Population Ecology

, Volume 51, Issue 1, pp 133–142 | Cite as

Comparative population dynamics of Peromyscus leucopus in North America: influences of climate, food, and density dependence

  • Guiming Wang
  • Jerry O. Wolff
  • Stephen H. Vessey
  • Norman A. Slade
  • Jack W. Witham
  • Joseph F. Merritt
  • Malcolm L. HunterJr
  • Susan P. Elias
Original Article


Temporal variation in population size is regulated by both exogenous forces and density-dependent feedbacks. Furthermore, accumulating evidence indicates that temporal and spatial variation in climate and resources can modify the strength of density dependence in animal populations. We analyzed six long-term time series estimates of Peromyscus leucopus (white-footed mouse) abundance from Kansas, Ohio, Pennsylvania, Virginia, Vermont, and Maine, USA, using the Kalman filter. Model-averaged estimates of the strength of delayed density dependence increased from west to east and from south to north. The strength of direct and delayed density dependence was positively related to the annual number of days with minimum temperature below −17.8°C. Annual population growth rates of P. leucopus at the Maine site were positively related to acorn abundance and P. leucopus populations tracked the changes in red-oak acorn abundance. The populations of P. leucopus living in northern latitudes might be more dependent on northern red oak (Quercus rubra) acorns for winter food than P. leucopus in southern latitudes. Furthermore, northern red oak trees mast every 4–5 years. Thus, longer, colder winters in northerly latitudes might result in stronger delayed density dependence in mouse populations with a shortage of winter food. Mice might simply track the acorn fluctuations in a delayed autocorrelated manner; however, delayed density dependence remained in our models for the Maine mouse populations after accounting for acorns, suggesting additional sources for delayed density dependence. Our results suggest that, in seed-eating Peromyscus, cyclicity may be regulated, in part, from low to high trophic levels.


Acorn Kalman filter Population cyclicity Red oak Spatial pattern Variable coefficient models 



We thank Dr. Andrew Liebhold for reading and commenting on an early draft of our manuscript. Two anonymous reviewers made helpful comments on our manuscript. Data collection in Kansas, Ohio, and Virginia relied on the assistance of numerous graduate and undergraduate students, and was supported by the University of Kansas General Research Fund, the Whitehall Foundation, and the National Science Foundation, respectively. The Maine data were collected with the assistance of numerous graduate and undergraduate students, and support was provided by the Holt Woodland Research Foundation. Guiming Wang was, in part, supported by a grant from the Research Initiation Program of Mississippi State University during the preparation of this manuscript. This is manuscript number WR236 of the Forest and Wildlife Research Center, Mississippi State University.


  1. Baker RH (1968) Habitats and distribution. In: King JA (ed) Biology of Peromyscus (Rodentia). Special Publication of the American Society of Mammalogists, Washington, DC, pp 98–126Google Scholar
  2. Bierman SM, Fairbairn JP, Petty SJ, Elston DA, Tidhar D, Lambin X (2006) Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.). Am Nat 167:583–590. doi: 10.1086/501076 PubMedCrossRefGoogle Scholar
  3. Bjørnstad ON, Falck W, Stenseth NC (1995) A geographic gradient in small rodent density fluctuations: a statistical modelling approach. Proc R Soc Lond B Biol Sci 262:127–133. doi: 10.1098/rspb.1995.0186 CrossRefGoogle Scholar
  4. Brady MJ, Slade NA (2004) Long-term dynamics of a grassland rodent community. J Mammal 85:552–561. doi :10.1644/1545-1542(2004)085<0552:LDOAGR>2.0.CO;2CrossRefGoogle Scholar
  5. Brooks RT, Smith HR, Healy WM (1998) Small-mammal abundance at three elevations on a mountain in central Vermont, USA: a sixteen-year record. For Ecol Manage 110:181–193CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  7. Carleton MD (1989) Systematics and evolution. In: Kirkland GL Jr, Layne JN (eds) Advances in the study of Peromyscus (Rodentia). Texas Tech University Press, Lubbock, pp 7–141Google Scholar
  8. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38Google Scholar
  9. Elias SP, Witham JW, Hunter ML (2004) Peromyscus leucopus abundance and acorn mast: population fluctuation patterns over 20 years. J Mammal 85:743–747. doi: 10.1644/BER-025 CrossRefGoogle Scholar
  10. Elkinton JS, Healy WM, Buonaccorsi JP, Boettner GH, Hazzard AM, Smith HR, Liebhold AM (1996) Interactions among gypsy moths, white-footed mice, and acorns. Ecology 77:2332–2342. doi: 10.2307/2265735 CrossRefGoogle Scholar
  11. Erb J, Stenseth N, Boyce MS (2000) Geographic variation in population cycles of Canadian muskrats (Ondatra zibethicus). Can J Zool 78:1009–1016. doi: 10.1139/cjz-78-6-1009 CrossRefGoogle Scholar
  12. Glazier DS (1980) Ecological shifts and the evolution of geographically restricted species of North American Peromyscus (mice). J Biogeogr 7:63–83. doi: 10.2307/2844547 CrossRefGoogle Scholar
  13. Halley J, Inchausti P (2002) Lognormality in ecological time series. Oikos 99:518–530. doi: 10.1034/j.1600-0706.2002.11962.x CrossRefGoogle Scholar
  14. Hanski I, Hansson L, Henttonen H (1991) Specialist predators, generalist predators, and the microtine rodent cycle. J Anim Ecol 60:353–367. doi: 10.2307/5465 CrossRefGoogle Scholar
  15. Hansson L, Henttonen H (1985) Gradients in density variations of small rodents: the importance of latitude and snow cover. Oecologia 67:394–402. doi: 10.1007/BF00384946 CrossRefGoogle Scholar
  16. Harvey AC (1989) Forecasting, structural time series models and the Kalman filter. Cambridge University Press, CambridgeGoogle Scholar
  17. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, New YorkGoogle Scholar
  18. Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc B 55:757–796Google Scholar
  19. Ives AR, Dennis B, Cottingham KL, Carpenter SR (2003) Estimating community stability and ecological interactions from time-series data. Ecol Monogr 73:301–330. doi :10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2CrossRefGoogle Scholar
  20. Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO (1998) Chain reactions linking acorns to gypsy moth outbreaks and lyme disease risk. Science 279:1023–1026. doi: 10.1126/science.279.5353.1023 PubMedCrossRefGoogle Scholar
  21. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:34–45Google Scholar
  22. Kesner MH, Linzey AV (1997) Modeling population variation in Peromyscus leucopus: an exploratory analysis. J Mammal 78:643–654. doi: 10.2307/1382915 CrossRefGoogle Scholar
  23. Krebs CJ (1999) Ecological methodology, 2nd edn. Addison-Wesley, New YorkGoogle Scholar
  24. Krohne DT, Merritt JF, Vessey SH, Wolff JO (1988) Comparative demography of forest Peromyscus. Can J Zool 66:2170–2176Google Scholar
  25. Lackey JA (1978) Reproduction, growth, and development in high-latitude and low-latitude populations of Peromyscus leucopus (Rodentia). J Mammal 59:69–83. doi: 10.2307/1379876 CrossRefGoogle Scholar
  26. Lewellen RH, Vessey SH (1998) The effect of density dependence and weather on population size of a polyvoltine species. Ecol Monogr 68:571–594CrossRefGoogle Scholar
  27. Lewontin RC (1966) On the measurement of relative variability. Syst Zool 15:141–142. doi: 10.2307/2411632 CrossRefGoogle Scholar
  28. Liebhold A, Elkinton J, Williams D, Muzika R-M (2000) What causes outbreaks of the gypsy moth in North America? Popul Ecol 42:257–266. doi: 10.1007/PL00012004 CrossRefGoogle Scholar
  29. Lima M, Berryman AA, Stenseth NC (2006) Feedback structures of northern small rodent populations. Oikos 112:555–564. doi: 10.1111/j.0030-1299.2006.14439.x CrossRefGoogle Scholar
  30. McShea WJ (2000) The influence of acorn crops on annual variation in rodent and bird populations. Ecology 81:228–238Google Scholar
  31. McShea WJ, Healy WM (2002) Oak forest ecosystem: ecology and management for wildlife. The John Hopkins University Press, BaltimoreGoogle Scholar
  32. Merritt JF, Lima M, Bozinovic F (2001) Seasonal regulation in fluctuating small mammal populations: feedback structure and climate. Oikos 94:505–514. doi: 10.1034/j.1600-0706.2001.940312.x CrossRefGoogle Scholar
  33. Miller DH, Getz LL (1977) Comparisons of population dynamics of Peromyscus and Clethrionomys‘ in New England. J Mammal 58:1–16. doi: 10.2307/1379721 CrossRefGoogle Scholar
  34. Olson DF Jr (1974) Quercus L. oak. In: Schopmeyer CS (ed) Seeds of woody plants in the United States. Agriculture Handbook no. 450. United States Department of Agriculture, Washington, DC, pp 692–703Google Scholar
  35. Ostfeld RS, Jones CG, Wolff JO (1996) Of mice and mast. Bioscience 46:323–330. doi: 10.2307/1312946 CrossRefGoogle Scholar
  36. Reed AW, Slade NA (2008) Density-dependent recruitment in grassland small mammals. J Anim Ecol 77:57–65PubMedCrossRefGoogle Scholar
  37. Royama T (1992) Analytic population dynamics. Chapman and Hall, LondonGoogle Scholar
  38. Saitoh T, Stenseth NC, Bjørnstad ON (1998) The population dynamics of the vole Clethrionomys rufocanus in Hokkaido, Japan. Res Popul Ecol (Kyoto) 40:61–76. doi: 10.1007/BF02765222 CrossRefGoogle Scholar
  39. Schnurr JL, Ostfeld RS, Canham CD (2002) Direct and indirect effects of masting on rodent populations and tree seed survival. Oikos 96:402–410. doi: 10.1034/j.1600-0706.2002.960302.x CrossRefGoogle Scholar
  40. Selås V (2006) Explaining bank vole cycles in southern Norway 1980–2004 from bilberry reports 1932–1977 and climate. Oecologia 147:625–631. doi: 10.1007/s00442-005-0326-7 PubMedCrossRefGoogle Scholar
  41. Selås V, Framstad E, Spidsø TK (2002) Effects of seed masting of bilberry, oak and spruce on sympatric populations of bank vole (Clethrionomys glareolus) and wood mouse (Apodemus sylvaticus) in southern Norway. J Zool (Lond) 258:459–468. doi: 10.1017/S0952836902001619 CrossRefGoogle Scholar
  42. Shimada T, Saitoh T (2006) Re-evaluation of the relationship between rodent populations and acorn masting: a review from the aspect of nutrients and defensive chemicals in acorns. Popul Ecol 48:341–352. doi: 10.1007/s10144-006-0012-6 CrossRefGoogle Scholar
  43. Shumway RH, Stoffer DS (2000) Time series analysis and its applications. Springer, New YorkGoogle Scholar
  44. Slade NA, Blair SM (2000) An empirical test of using counts of individuals captured as indices of population size. J Mammal 81:1035–1045. doi :10.1644/1545-1542(2000)081<1035:AETOUC>2.0.CO;2CrossRefGoogle Scholar
  45. Sokal VL, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  46. Sork VL, Bramble J, Sexton O (1993) Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology 74:528–541. doi: 10.2307/1939313 CrossRefGoogle Scholar
  47. Stenseth NC, Viljugrein H, Saitoh T, Hansen TF, Kittilsen MO, Bølviken E, Glöckner F (2003) Seasonality, density dependence, and population cycles in Hokkaido voles. Proc Natl Acad Sci USA 100:11478–11483. doi: 10.1073/pnas.1935306100 PubMedCrossRefGoogle Scholar
  48. Taitt MJ, Krebs CJ (1985) Population dynamics and cycles. In: Tamarin RH (ed) Biology of new world Microtus. Special Publication of the American Society of Mammalogists, Washington, DC, pp 567–620Google Scholar
  49. Tkadlec E, Stenseth NC (2001) A new geographical gradient in vole population dynamics. Proc R Soc Lond B Biol Sci 268:1547–1552. doi: 10.1098/rspb.2001.1694 CrossRefGoogle Scholar
  50. Turchin P (1993) Chaos and stability in rodent population dynamics: evidence from non-linear time-series analysis. Oikos 68:167–172. doi: 10.2307/3545323 CrossRefGoogle Scholar
  51. Wang GM, Hobbs NT, Boone RB, Illius AW, Gordon IJ, Gross JE, Hamlin KL (2006) Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87:95–102. doi: 10.1890/05-0355 PubMedCrossRefGoogle Scholar
  52. Williams DW, Liebhold AM (1995) Detection of delayed density dependence: effects of autocorrelation in an exogenous factor. Ecology 76:1005–1008. doi: 10.2307/1939363 CrossRefGoogle Scholar
  53. Williams CK, Ives AR, Applegate RD (2003) Population dynamics across geographical ranges: time-series analyses of three small game species. Ecology 84:2654–2667. doi: 10.1890/03-0038 CrossRefGoogle Scholar
  54. Williams CK, Ives AR, Applegate RD, Ripa J (2004) The collapse of cycles in the dynamics of North American grouse populations. Ecol Lett 7:1135–1142. doi: 10.1111/j.1461-0248.2004.00673.x CrossRefGoogle Scholar
  55. Wolff JO (1985) Comparative population ecology of Peromyscus leucopus and Peromyscus maniculatus. Can J Zool 63:1548–1555CrossRefGoogle Scholar
  56. Wolff JO (1994) Reproductive success of solitarily and communally nesting white-footed mice and deer mice. Behav Ecol 5:206–209. doi: 10.1093/beheco/5.2.206 CrossRefGoogle Scholar
  57. Wolff JO (1996a) Population fluctuations of mast-eating rodents are correlated with production of acorns. J Mammal 77:850–856. doi: 10.2307/1382690 CrossRefGoogle Scholar
  58. Wolff JO (1996b) Coexistence of white-footed mice and deer mice may be mediated by fluctuating environmental conditions. Oecologia 108:529–533. doi: 10.1007/BF00333730 CrossRefGoogle Scholar
  59. Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Model 157:157–177. doi: 10.1016/S0304-3800(02)00193-X CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2008

Authors and Affiliations

  • Guiming Wang
    • 1
  • Jerry O. Wolff
    • 2
  • Stephen H. Vessey
    • 3
  • Norman A. Slade
    • 4
  • Jack W. Witham
    • 5
  • Joseph F. Merritt
    • 6
  • Malcolm L. HunterJr
    • 7
  • Susan P. Elias
    • 5
  1. 1.Department of Wildlife and FisheriesMississippi State UniversityMississippi StateUSA
  2. 2.Department of BiologySt. Cloud State UniversitySt. CloudUSA
  3. 3.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA
  4. 4.Department of Ecology and Evolutionary Biology and Museum of Natural History/Biodiversity Research CenterUniversity of KansasLawrenceUSA
  5. 5.Holt Research ForestUniversity of MaineArrowsicUSA
  6. 6.Illinois Natural History SurveyChampaignUSA
  7. 7.Department of Wildlife EcologyUniversity of MaineOronoUSA

Personalised recommendations