Advertisement

Population Ecology

, Volume 49, Issue 1, pp 5–14 | Cite as

Chemical defence, offence and alliance in ants–aphids–ladybirds relationships

  • Jacques M. Pasteels
Review Special feature: predatory ladybirds: individuals, populations, and interactions

Abstract

Chemicals, which mediate the interactions between aphids, ladybirds and ants, are reviewed. Special emphasis is laid on autogenous and plant-derived chemical defence in aphids and ladybirds. Evidences for chemical cues used during foraging and oviposition in ladybirds are assessed. Possible mutualistic interaction between plants and the third trophic level is illustrated by the as yet few reports of indirect plant-defence volatiles induced by aphids or coccids attracting parasitoids or ladybirds. The use of chemical signals allowing aphid parasitoids or ladybirds to squeeze into ant–aphid mutualistic association is briefly described. Questions are raised and hypotheses suggested which could stimulate further research on aphid host-plant influence on ladybird foraging behaviour and fitness, and on the cues used by aphid-web partners for their mutual recognition.

Keywords

Chemical communication Egg laying Foraging Indirect plant-defence Sequestration 

Notes

Acknowledgments

Many thanks are due to H.J. Jacobson for correcting the English and for helpful discussion. J.L. Hemptinne and D. Daloze made valuable comments on the manuscript.

References

  1. Al Abassi S, Birkett MA, Petterson J, Pickett JA, Woodcok CM (1998) Ladybird beetle odour identified and found to be responsible for attraction between adults. Cell Mol Life Sci 54:876–879CrossRefGoogle Scholar
  2. Al Abassi S, Birkett MA, Petterson J, Pickett JA, Wadhams LJ, Woodcock CM (2000) Response of the seven-spot ladybird to an alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. J Chem Ecol 26:1765–1771CrossRefGoogle Scholar
  3. Al Abassi S, Birkett MA, Petterson J, Pickett JA, Wadhams LJ, Woodcock CM (2001) Response of the ladybird parasitoid, Dinocampus coccinellae, to toxic alkaloids from the seven-spot ladybird, Coccinella septempunctata. J Chem Ecol 27:33–43PubMedCrossRefGoogle Scholar
  4. Agarwala BK, Dixon AFG (1992) Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol Entomol 17:303–309Google Scholar
  5. Agarwala BK, Bhattacharya S, Bardhanroy P (1998) Who eats whose eggs? Intra- versus inter-specific interactions in starving ladybird beetles predaceous on aphids. Ethol Ecol Evol 10:361–368CrossRefGoogle Scholar
  6. Arnonson JT, Guillet G, Durst T (2004) Phytochemical diversity of insect defenses in tropical and temperate plant families. In: Cardé RT, Millar JC (eds) Advances in chemical ecology. Cambridge University Press, Cambridge, pp 1–20Google Scholar
  7. Bertschy C, Turlings TCJ, Bellotti AC, Dorn S (2001) The role of mealybug-induced cassava plant volatiles in the attraction of the encyrtid parasitoids Aenasius vexans and Apoanagyrus diversicornis. J Insect Behav 14:363–371CrossRefGoogle Scholar
  8. Budenberg WJ, Powell W (1992) The role of honeydew as an ovipositional stimulant for two species of syrphids. Entomol exp appl 64:57–61CrossRefGoogle Scholar
  9. Cottrell TE, Yeargan KV (1998) Intraguild predation between an introduced lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae) and a native lady beetle, Coleomegilla maculata (Coleoptera: Coccinellidae). J Kans Entomol Soc 71:159–163Google Scholar
  10. Daloze D, Braekman JC, Pasteels JM (1995) Ladybird defence alkaloids: structure, chemotaxonomic and biosynthetic aspects (Col.: Coccinellidae). Chemoecology 5/6:173–183CrossRefGoogle Scholar
  11. Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154CrossRefGoogle Scholar
  12. Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost–benefit analyses rather than origin of compounds. Funct Ecol 2:131–139CrossRefGoogle Scholar
  13. Dixon AFG (1958) The escape responses shown by certain aphids to the presence of the coccinellid beetle Adalia decempunctata (L.). Trans R Entomol Soc London 110:319–334Google Scholar
  14. Dixon AFG (1997) Patch quality and fitness in predatory ladybirds. In: Dettner K, Bauer G, Volkl (eds) Vertical food web interactions. Evolutionary patterns and driving forces. Ecol Stud 130:205–223Google Scholar
  15. Dixon AFG (2000) Insect predator–prey dynamics. Ladybird beetles and biological control. Cambridge University Press, CambridgeGoogle Scholar
  16. Doumbia M, Hemptinne JL, Dixon AFG (1998) Assessment of patch quality by ladybirds: role of larval tracks. Oecologia 118:197–202CrossRefGoogle Scholar
  17. Du Y, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals, released during aphid feeding, that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368CrossRefGoogle Scholar
  18. Edwards JS (1966) Defence by smear: supercooling in the cornicle wax of aphids. Nature 211:73–74CrossRefGoogle Scholar
  19. Eisner T, Ziegler R, McCormick JL, Eisner M, Hoebeke ER, Meinwald J (1994) Defensive use of an acquired substance (carminic acid) by predaceous insect larvae. Experientia 50:610–615PubMedCrossRefGoogle Scholar
  20. Feeny P (1975) Biochemical coevolution between plants and their insect herbivores. In: Gilbert L, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 3–19Google Scholar
  21. Francis F, Haubruge E, Gaspar Ch (2000) Influence of host plants on specialist/generalist aphids and on the development of Adalia bipunctata (Coloptera: Coccinellidae). Eur J Entomol 97:481–483Google Scholar
  22. Francis F, Lognay G, Wathelet JP, Haubruge E (2001) Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J Chem Ecol 27:243–256PubMedCrossRefGoogle Scholar
  23. Francis F, Lognay G., Haubruge E (2004) Olfactory responses to aphid and host plant volatiles releases: (E)-β-farnesene an effective kairomone for the predator Adalia bipunctata. J Chem Ecol 30:741–755PubMedCrossRefGoogle Scholar
  24. Frechette B, Dixon AFG, Alauzet C, Hemptinne JL (2004) Age and experience influence patch assessment for oviposition by an insect predator. Ecol Entomol 29:578–583CrossRefGoogle Scholar
  25. Godeau J-F, Hemptinne J-L, Verhaeghe J-C (2003) Ant trail: a highway for Coccinella magnifica Redtenbacher (Coleoptera: Coccinellidae) In: Proceedings of 8th International Symposium Ecology Aphidophaga Arquipélago. Biology, ecology and behaviour of aphidophagous insects. Life Mar Sci Supplement 5:79–83Google Scholar
  26. Han B, Chen Z (2002) Behavioral and electrophysiological responses of natural enemies from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J Chem Ecol 28:2203–2219PubMedCrossRefGoogle Scholar
  27. Hemptinne J-L, Dixon AFG (1991) Why ladybirds have been generally so ineffective in biological control? In: Polgar L, Chambers RJ, Dixon AFG, Hodek I (eds) Behaviour and impact of aphidophaga. SP Academic, The HagheGoogle Scholar
  28. Hemptinne J-L, Dixon AFG (2000) Defence, oviposition and sex: semiochemical parsimony in two species of ladybird beetles (Coleoptera, Coccinellidae)? A short review. Eur J Entomol 97:443–447Google Scholar
  29. Hemptinne J-L, Dixon AFG, Gauthier C (2000a) Nutritive cost of intraguild predation on eggs of Coccinella septempunctata and Adalia bipunctata (Coleoptera: Coccinellidae). Eur J Entomol 97:559–569Google Scholar
  30. Hemptinne J-L, Gaudin M, Dixon AFG, Lognay G (2000b) Social feeding in ladybird beetles: adaptative significance and mechanism. Chemoecology 10:149–152CrossRefGoogle Scholar
  31. Hemptinne J-L, Lognay G, Gauthier C, Dixon AFG (2000c) Role of surface chemical signals in egg cannibalism and intraguild predation in ladybirds (Coleoptera: Coccinellidae). Chemoecology 10:123–128CrossRefGoogle Scholar
  32. Hemptinne J-L, Lognay G, Doumbia M, Dixon AFG (2001) Chemical nature and persistence of the oviposition deterring pheromone of the larvae of the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology 11:43–47CrossRefGoogle Scholar
  33. Hodek I (1973) Biology of Coccinellidae. Academia, PragueGoogle Scholar
  34. Hodek I, Honek A (1996) Ecology of Coccinellidae. Kluwer, DordrechtGoogle Scholar
  35. Iperti G (1965) Contribution à l’étude de la spécificité chez les principales coccinelles aphidiphages des Alpes-Maritimes et des Basses-Alpes. Entomophaga 10:159–178CrossRefGoogle Scholar
  36. King AG, Meinwald J (1966) Review of the defensive chemistry of coccinellids. Chem Rev 96:1105–1122CrossRefGoogle Scholar
  37. Laurent P, Braekman J-C, Daloze D, Pasteels JM (2003) Biosynthesis of defensive compounds from beetles and ants. Eur J Org Chem 15: 2733–2743. DOI: 10.1002/ejoc.200300008Google Scholar
  38. Laurent P, Braekman J-C, Daloze D (2005) Insect chemical defense. Top Curr Chem 240: 167–229. DOI: 10.1007/b98317Google Scholar
  39. Lebrun B, Braekman J-C, Daloze D, Kalushkov P, Pasteels JM (2001) Hyperaspine, a new 3-oxaquinolizidine alkaloid from Hyperaspis campestris (Coleoptera: Coccinellidae). Tetrahedron Lett 42:4621–4623CrossRefGoogle Scholar
  40. Leclercq S, Braekman JC, Daloze D, Pasteels JM (2000) The defensive chemistry of ants. In: Herz W, Falk H, Kirby GW, Moore RE (eds) Progress in the chemistry of organic natural products, 79. Springer, Wien, pp 239–249Google Scholar
  41. Malcom SB (1990) Chemical defence in chewing and sucking insect herbivores: plant-derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology 1:12–21CrossRefGoogle Scholar
  42. Marple NM, Braekfield PM, Cowie PG (1989) Differences between the 7-spot and 2-spot ladybird beetles (Coccinellidae) in their toxic effects on a bird predator. Ecol Entomol 14:79–84Google Scholar
  43. Mendel Z, Blumberg D, Zehavi A, Weissenberg M (1992) Some polyphagous Homoptera gain protection from their natural enemies by feeding on the toxic plants Spartium junceum and Erythrina corallodendron (Leguminosae). Chemoecology 3:118–124CrossRefGoogle Scholar
  44. Merlin J, Lemaire O, Grégoire J-C (1996a) Oviposition in Cryptolaemus montrouzieri stimulated by wax filants of its prey. Entomol Exp Appl 79:141–146CrossRefGoogle Scholar
  45. Merlin J, Lemaire O, Grégoire J-C (1996b) Chemical cues produced by conspecific larvae deter oviposition by the coccidophagous ladybird beetle, Cryptolaemus montrouzieri. Entomol Exp Appl 79:147–151CrossRefGoogle Scholar
  46. Moore BP, Brown WV, Rothschild M (1990) Methylalkylpyrazines in aposematic insects, their host plants and mimics. Chemoecology 12:43–51CrossRefGoogle Scholar
  47. Nakashima Y, Birkett MA, Pye BJ, Pickett JA, Powell W (2004) The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata, by the aphid parasitoid, Aphidius ervi. J Chem Ecol 30:1103–1116PubMedCrossRefGoogle Scholar
  48. Ninkovic V, Abassi SA, Petterson J (2001) The influence of aphid-induced plant volatiles in ladybird beetle searching behavior. Biol Control 21:191–195CrossRefGoogle Scholar
  49. Obata S (1986) Mechanisms of prey finding in the aphidophagous ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Entomophaga 31:303–311CrossRefGoogle Scholar
  50. Pasteels JM (1976) Evolutionary aspects in chemical ecology and chemical communication. In: White D (ed) Proceedings of the 15th international congress entomology. Entomological Society of America, Washington, pp 281–293Google Scholar
  51. Pasteels JM (1978) Apterous and brachypterous coccinellids at the end of the food chain, Cionura erecta (Asclepiadaceae)-Aphis nerii. Entomol Exp Appl 24:379–384CrossRefGoogle Scholar
  52. Pasteels J M (1982) Is kairomone a valid and useful term? J Chem Ecol 8:1079–1081CrossRefGoogle Scholar
  53. Pasteels J M, Deroe C, Tursch B, Braekman J-C, Daloze D, Hootele C (1973) Distribution et activité des alcaloïdes des coccinelles. J Insect Physiol 19:1771–1784CrossRefGoogle Scholar
  54. Powell W, Pennachio F, Poppy GM, Tremblay E (1998) Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Bracinidae: Aphidiinae). Biol Control 11:104–112CrossRefGoogle Scholar
  55. Rothschild M, von Euw J, Reichstein T (1970) Cardiac glycosides in the oleader aphid, Aphis nerii. J Insect Physiol 16:1141–1145PubMedCrossRefGoogle Scholar
  56. Rothschild M, von Euw J, Reichstein T (1973) Cardiac glycosides in a scale insect (Aspidiotus), a ladybird (Coccinella) and a lacewing (Chrysopa). J Entomol A 48:89–90Google Scholar
  57. Ruzicka Z (1997a) Persistence of the oviposition-deterring pheromone in Chrysopa oculata (Neur.: Chrysopidae). Entomophaga 42:107–112Google Scholar
  58. Ruzicka Z (1997b) Recognition of oviposition-deterring allomones by aphidophagous predators (Neuroptera: Chrysopidae, Coleoptera : Coccinellidae). Eur J Entomol 94:431–434Google Scholar
  59. Schröder FC, Farmer JJ, Attygalle A, Smedley SC, Eisner T, Meinwald J (1998) Combinatorial chemistry in insects: a library of defensive macrocyclic polyamines. Science 281:428–431PubMedCrossRefGoogle Scholar
  60. Sloggett JJ, Wood RA, Majerus MEN (1998) Adaptation of Coccinella magnifica Redtenbacher, a myrmecophiloous coccinellid, to aggression by wood ants (Formica rufa group). I. Adult behavioural adaptation, its ecological context and evolution. J Insect Behav 6:889–904CrossRefGoogle Scholar
  61. Souissi R, Le Rü B (1999) Behavioural responses of the endoparasitoid Apoanagyrus lopezi to odours of the host and host’s cassava plants. Entomol Exp Appl 90:215–220CrossRefGoogle Scholar
  62. Souissi R, Nénon JP, Le Rü B (1998) Olfactory responses of parasitoid Apoanagyrus lopezi to odor of plants, mealybugs, and plant-mealybug complexes. J Chem Ecol 24:37–48CrossRefGoogle Scholar
  63. Stadler B, Dixon AFG (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24:363–369CrossRefGoogle Scholar
  64. Turlings TCJ, Wäckers F (2004) Recruitment of predators and parasitoids by hebivore–injured plants. In: Cardé RT, Millar JC (eds) Advances in chemical ecology. Cambridge University Press, Cambrige, pp 21–75Google Scholar
  65. Turlings TCJ, Bernasconi M, Bertossa R (1998) The induction of volatiles in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol Control 11:122–129CrossRefGoogle Scholar
  66. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 371:141–172CrossRefGoogle Scholar
  67. Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8:307–344CrossRefGoogle Scholar
  68. Wink M, Römer P (1986) Acquired toxicity-the advantages of specializing on alkaloid-rich lupins to Macrosiphon albifrons (Aphididae). Naturwissenschaften 73:210–212CrossRefGoogle Scholar
  69. Wink M, Witte L (1991) Storage of quinolizidine alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera: Aphididae). Entomol Gener 15:237–254Google Scholar
  70. Wink M, Hartmann T, Witte L, Rheinheimer J (1982) Interrelationship between quinolizidine alkaloid producing legumes and infesting insects: Exploitation of the alkaloid-containing phloem sap of Cytisus scoparius by the Broom aphid (Aphis cytisorum). Z Naturforsch 37c:1081–1086Google Scholar
  71. Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids. Naturwissenschaten 77:540–543CrossRefGoogle Scholar
  72. Zhu J, Cossé AA, Obrycki JJ, Boo KS, Baker TC (1999) Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioural responses. J Chem Ecol 25:1163–1177CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2006

Authors and Affiliations

  1. 1.Laboratoire d’Eco-Ethologie EvolutiveUniversité libre de BruxellesBruxellesBelgium

Personalised recommendations